搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究

王歆钰 储瑞江 魏胜男 董正超 仲崇贵 曹海霞

引用本文:
Citation:

应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究

王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞

Phenomenological theory for investigation on stress tunable electrocaloric effect in ferroelectric EuTiO3 films

Wang Xin-Yu, Chu Rui-Jiang, Wei Sheng-Nan, Dong Zheng-Chao, Zhong Chong-Gui, Cao Hai-Xia
PDF
导出引用
  • 基于Laudau-Devonshire的热动力学模型, 计算了EuTiO3铁电薄膜材料的电热效应. 结果显示在外加应力的调控下, 电极化、电热系数以及绝热温差都会随之变化. 外加垂直于表面的张应力加大, 薄膜的相变温度升高, 绝热温差增加, 最大绝热温差所对应的工作温度向高温区移动. 对于二维平面失配应变um =-0.005的薄膜, 当外加张应力σ3 = 5 GPa时, 其最大电热系数为1.75×10-3 C/m2·K, 电场变化200 MV/m 时室温下绝热温差ΔT 的最大值可达到14 K 以上, 绝热温差ΔT ≥13 K 的工作温区超过120 K, 表明可以通过调控外部应力来获取室温时较大的绝热温差. 此结果预示着铁电EuTiO3 薄膜在室温固态制冷方面可能具有较好的应用前景.
    Researches on electrocaloric effects of ferroelectric materials and their applications in solid-state refrigeration have attracted great interest in recent years. EuTiO3 is a new multiferroic material with many special physical properties, such as high dielectric constant, low dielectric-loss, as well as their responses to tunable external electric field and temperature. With EuTiO3 ferroelectric thin films, their polarization size and phase transition process not only can be changed by regulating external electric field and temperature applied, but also can be controlled by adjusting the external stress applied and the lattice mismatch with the substrate in a large scale. Accordingly, in this paper a phenomenological Landau-Devonshire thermodynamic theory is used to investigate the ferroelectric properties and electrocaloric effects of EuTiO3 ferroelectric films under different external tensile stresses (σ3 > 0) perpendicular to the film surface and different in-plane compressive strains. We have calculated the electric polarizations, electrocaloric coefficients and adiabatic temperature differences as a function of temperature for EuTiO3 ferroelectric films with a biaxial in-plane misfit strain um =-0.005 under different applied stresses. Results demonstrate that the changes of the electric polarization, the electrocaloric coefficient and the adiabatic temperature differences conform with the regulation of externally applied stresses. With the enhancement of applied tensile stress perpendicular to the film surface, the phase transition temperature and adiabatic temperature change of EuTiO3 thin film increase, and the operating temperature corresponding to the maximum adiabatic temperature difference moves toward high temperature region. For the thin films with a biaxial in-plane misfit compressive strain um =-0.005 and the external tensile stress σ3 = 5 GPa, when the change of electric field strength is 200 MV/m, the adiabatic temperature differences at room temperature can be over 14 K, and the maximum electrocaloric coefficient may approach 1.75×10-3 C/m2·K. In the meantime, the working temperature range, when the adiabatic temperature differences go beyond 13 K, is over 120 K. Then we investigate the effect of in-plane compressive strains on the changes of adiabatic temperature, showing that with the increase of compressive strain um, the adiabatic temperature change will also increase and the peak of the curve of adiabatic temperature change versus temperature will shift toward high temperature zone far away from room temperature. Therefore, the above results show that we can not only have relatively bigger adiabatic temperature differences in epitaxially grown EuTiO3 thin films through the regulation of external stresses and in-plane lattice misfit strain, but also a sound application prospect of ferroelectric EuTiO3 thin film in solid-state refrigeration at room temperature.
    • 基金项目: 江苏省自然科学基金(批准号:BK2012655)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655).
    [1]

    Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Maosa L, MathurN D 2013 Adv. Mater. 25 136

    [2]

    Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102

    [3]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983

    [4]

    Zhang H B, Wu H P, Zhou T, Zhang Z, Chai G Z 2013 Acta. Phys. Sin. 62 247701 (in Chinese) [张杭波, 吴化平, 周挺, 张征, 柴国钟 2013 62 247701]

    [5]

    Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [7]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821

    [8]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Eur. Phys. J. B 84 25

    [9]

    Hamad M A 2013 AIP Advances 3 032115

    [10]

    Dai X, Cao H X, Jiang Q, Lo V C 2009 J. Appl. Phys. 106 034103

    [11]

    Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903

    [12]

    Zhang J, Alpay S P, Rossetti G A 2011 Appl. Phys. Lett. 98 132907

    [13]

    Pirc R, Kutnjak Z, Blinc R, Zhang Q M 2011 J. Appl. Phys. 110 074113

    [14]

    Lisenkov S, Ponomareva I 2012 Phys. Rev. B 86 104103

    [15]

    Cao H X, Li Z Y 2009 J. Appl. Phys. 106 094104

    [16]

    Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckrath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston H E, Schiom D G 2010 Nature 466 954

    [17]

    Zhou W L, Xia K, Xu D, Zhong C G, Dong Z C, Fang J H 2012 Acta. Phys. Sin. 61 097702 (in Chinese) [周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮 2012 61 097702]

    [18]

    Morozovska A N, Glinchuk M D, Behera R K, Zaulychny B, Deo C S, Eliseev E A 2011 Phys. Rev. B 84 205403

    [19]

    Schlom D G, Chen L Q, Eom Ch B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589

    [20]

    Jiang Q, Wu H 2002 Chin. Phys. B 11 1303

    [21]

    Ryan P J, Kim J W, Birol T, Thompson P, Lee J H, Ke X, Normile P S, Karapetrova E, Schiffer P, Brown S D, Fennie C J, Schlom D G 2013 Nat. Commun. 4 1334

    [22]

    Yang Y, Ren W, Wang D, and Bellaiche L 2012 Phys. Rev. Lett. 109 267602

    [23]

    Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105

    [24]

    Akcay G, Alpay S P, Mantese J V, Rossetti G A 2007 Appl. Phys. Lett. 90 252909

    [25]

    Bai G, Li R, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 111 044102

    [26]

    Liu Y, Peng X, Lou X, Zhou H 2012 Appl. Phys. Lett. 100 192902

    [27]

    Hao X, Zhai J 2014 Appl. Phys. Lett. 104 022902

    [28]

    Muta H, Ieda A, Kurosaki K, Yamanaka S 2005 Mater. Trans. 46 1466

    [29]

    Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 97 267602

    [30]

    Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Appl. D:Appl. Phys. 45 455306

    [31]

    Qiu J H, Jiang Q 2008 Phys. Lett. A 372 7191

    [32]

    Peng B L, Fan H Q, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [33]

    Saranya D, Chaudhuri A R, Parui J, Krupanidhi S B 2009 Bull. Mater. Sci. 32 259

    [34]

    Liu Y, Infante I C, Lou X, Lupascu D C, Dkhil B 2014 Appl. Phys. Lett. 104 012907

    [35]

    Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q, Guo D 2011 J. Appl. Phys. 110 094103

    [36]

    Li B, Wang J B, Zhong X L, Wang F, Wang L J, Zhou Y C 2013 J. Appl. Phys. 114 044301

  • [1]

    Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Maosa L, MathurN D 2013 Adv. Mater. 25 136

    [2]

    Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102

    [3]

    Lu S G, Zhang Q M 2009 Adv. Mater. 21 1983

    [4]

    Zhang H B, Wu H P, Zhou T, Zhang Z, Chai G Z 2013 Acta. Phys. Sin. 62 247701 (in Chinese) [张杭波, 吴化平, 周挺, 张征, 柴国钟 2013 62 247701]

    [5]

    Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [7]

    Neese B, Chu B J, Lu S G, Wang Y, Furman E, Zhang Q M 2008 Science 321 821

    [8]

    Qiu J H, Ding J N, Yuan N Y, Wang X Q and Yang J 2011 Eur. Phys. J. B 84 25

    [9]

    Hamad M A 2013 AIP Advances 3 032115

    [10]

    Dai X, Cao H X, Jiang Q, Lo V C 2009 J. Appl. Phys. 106 034103

    [11]

    Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J, Zhang Z D 2010 Appl. Phys. Lett. 96 102903

    [12]

    Zhang J, Alpay S P, Rossetti G A 2011 Appl. Phys. Lett. 98 132907

    [13]

    Pirc R, Kutnjak Z, Blinc R, Zhang Q M 2011 J. Appl. Phys. 110 074113

    [14]

    Lisenkov S, Ponomareva I 2012 Phys. Rev. B 86 104103

    [15]

    Cao H X, Li Z Y 2009 J. Appl. Phys. 106 094104

    [16]

    Lee J H, Fang L, Vlahos E, Ke X, Jung Y W, Kourkoutis L F, Kim J W, Ryan P J, Heeg T, Roeckrath M, Goian V, Bernhagen M, Uecker R, Hammel P C, Rabe K M, Kamba S, Schubert J, Freeland J W, Muller D A, Fennie C J, Schiffer P, Gopalan V, Johnston H E, Schiom D G 2010 Nature 466 954

    [17]

    Zhou W L, Xia K, Xu D, Zhong C G, Dong Z C, Fang J H 2012 Acta. Phys. Sin. 61 097702 (in Chinese) [周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮 2012 61 097702]

    [18]

    Morozovska A N, Glinchuk M D, Behera R K, Zaulychny B, Deo C S, Eliseev E A 2011 Phys. Rev. B 84 205403

    [19]

    Schlom D G, Chen L Q, Eom Ch B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589

    [20]

    Jiang Q, Wu H 2002 Chin. Phys. B 11 1303

    [21]

    Ryan P J, Kim J W, Birol T, Thompson P, Lee J H, Ke X, Normile P S, Karapetrova E, Schiffer P, Brown S D, Fennie C J, Schlom D G 2013 Nat. Commun. 4 1334

    [22]

    Yang Y, Ren W, Wang D, and Bellaiche L 2012 Phys. Rev. Lett. 109 267602

    [23]

    Liu P F, Meng X J, Chu J H, Geneste G, Dkhil B 2009 J. Appl. Phys. 105 114105

    [24]

    Akcay G, Alpay S P, Mantese J V, Rossetti G A 2007 Appl. Phys. Lett. 90 252909

    [25]

    Bai G, Li R, Liu Z G, Xia Y D, Yin J 2012 J. Appl. Phys. 111 044102

    [26]

    Liu Y, Peng X, Lou X, Zhou H 2012 Appl. Phys. Lett. 100 192902

    [27]

    Hao X, Zhai J 2014 Appl. Phys. Lett. 104 022902

    [28]

    Muta H, Ieda A, Kurosaki K, Yamanaka S 2005 Mater. Trans. 46 1466

    [29]

    Fennie C J, Rabe K M 2006 Phys. Rev. Lett. 97 267602

    [30]

    Wu H P, Xu B, Liu A P, Chai G Z 2012 J. Appl. D:Appl. Phys. 45 455306

    [31]

    Qiu J H, Jiang Q 2008 Phys. Lett. A 372 7191

    [32]

    Peng B L, Fan H Q, Zhang Q 2013 Adv. Funct. Mater. 23 2987

    [33]

    Saranya D, Chaudhuri A R, Parui J, Krupanidhi S B 2009 Bull. Mater. Sci. 32 259

    [34]

    Liu Y, Infante I C, Lou X, Lupascu D C, Dkhil B 2014 Appl. Phys. Lett. 104 012907

    [35]

    Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q, Guo D 2011 J. Appl. Phys. 110 094103

    [36]

    Li B, Wang J B, Zhong X L, Wang F, Wang L J, Zhou Y C 2013 J. Appl. Phys. 114 044301

  • [1] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [2] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [3] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变.  , 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [4] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响.  , 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 孙景阳, 王东明, 吕业刚, 王苗, 汪伊曼, 沈祥, 王国祥, 戴世勋. 应用于相变存储器的Cu-Ge3Sb2Te5薄膜的结构及相变特性研究.  , 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [7] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.  , 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] 汪昌州, 朱伟玲, 翟继卫, 赖天树. Ga30Sb70/Sb80Te20纳米复合多层薄膜的相变特性研究.  , 2013, 62(3): 036402. doi: 10.7498/aps.62.036402
    [9] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器.  , 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [10] 卢兆信. 参数修改对铁电薄膜相变性质的影响.  , 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [11] 张杭波, 吴化平, 周挺, 张征, 柴国钟. 面外应变对1-3型垂直异质P(VDF-TrFE)基复合薄膜电热性能的调控.  , 2013, 62(24): 247701. doi: 10.7498/aps.62.247701
    [12] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究.  , 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [13] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究.  , 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [14] 朱杰, 张辉, 张鹏翔, 谢康, 胡俊涛. Pb(Zr0.3Ti0.7)O3铁电薄膜激光感生电压效应.  , 2010, 59(9): 6417-6422. doi: 10.7498/aps.59.6417
    [15] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响.  , 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [16] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析.  , 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [17] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算.  , 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫.  , 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  6102
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-01-13
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map