搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用

张振清 路海 王少华 魏泽勇 江海涛 李云辉

引用本文:
Citation:

平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用

张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉

Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials

Zhang Zhen-Qing, Lu Hai, Wang Shao-Hua, Wei Ze-Yong, Jiang Hai-Tao, Li Yun-Hui
PDF
导出引用
  • 本文对具有类EIR色散特性的平面金属等离激元美特材料(planar plasmonic metamaterials, PPM)对光学Tamm态及相关激射行为的增强作用进行了研究. 我们首先运用传输矩阵方法分析了利用PPM结构的色散来增强光学Tamm态对应模式电磁局域密度的可能性. 其次, 我们将具有类EIR特性的PPM与一维光子晶体(photonic crystal, PC)合在一起设计了一种平面等离激元美特材料-光子晶体(PPM-PC)异质结构. 研究发现, 通过在电磁局域密度最高的PPM结构中(或附近)加入增益介质, 可观察到比通常光学Tamm态更强的激射增强效应及更明显的单色性响应. 这些特性使得这种PPM-PC结构有望被应用于低阈值激光器、荧光增强等方面.
    Optical Tamm state (OTS) refers to a kind of interface state between the metal layer and the photonic crystal (PC) reflectors. Given the matching conditions being satisfied, the electromagnetic waves tend to tunnel through the metal-PC hetero-structure efficiently. Quite different from the conventional surface plasmon polaritons (SPPs) on metal surface, OTSs can be excited directly by normally incident propagating waves for both TE and TM polarizations to occur. In the meantime, strong electromagnetic (EM) localization around the interface can be achieved, leading to potential applications such as polariton lasers, enhancement of Faraday rotation, various nonlinear effects, and so on.#br#To further enhance the EM localization around the interface, some well designed artificial structures are patterned on the thin metal layer. For instance, confined Tamm plasmon modes with the aid of metallic microdisks are proposed by Gazzano et al. to control the spontaneous optical emission. Moreover, in 2013 it was also demonstrated that planar plasmonic metamaterials (PPM) with electromagnetically-induced-reflection-like (EIR-like) dispersion can boost the Q-factor of OTS tunneling mode, as well as the EM localization around the interface between planar plasmonic metamaterials and PC. Both these methods can be understood in the same scheme:the structure-induced dispersion provides exotic power of modulating the propagation of OTS.#br#In this paper, the enhancement of optical Tamm state and related lasing effect is investigated by introducing planar plasmonic metamaterials with EIR-like dispersion. The planar plasmonic metamaterials are achieved by periodic patterning some plasmonic units on the planar metal layer. Through fine tuning each unit cell, EIR-like dispersion can be achieved, making the properties of hetero-structure more tunable. One-dimensional photonic crystals composed of TiO2/SiO2 are also designed properly to support the optical Tamm state in PPM-PC hetero-structure. First, to analyze the possibility of enhancing local electromagnetic field density of optical Tamm state, a transfer matrix method is performed when EIR-like dispersion of PPM structure is hired. Next, full wave simulations based on FDTD method are also carried out to verify a hetero-structure composed of PPM and one-dimensional photonic crystal embbed with gain media. By introducing gain medium into (or near) the PPM structure, where the maximum local electromagnetic field density exists, the lasing effect is found obviously enhanced. Better emitting efficiency and monochromic response can be observed compared to the common metal-PC hetero-structure. These features make our structure promising to reduce the lasing threshold, enhance the fluorescence, and so on.
    • 基金项目: 国家重点基础研究发展计划(973)(批准号:2011CB922001),国家自然科学基金(批准号:51377003,11234010,61137003,11404102),河南省自然科学基金(批准号:14A140002)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant Nos. 51377003, 11234010, 61137003, 11404102), the Natural Science Foundation of Henan Province, China (Grant No. 14A140002), and the Fundamental Research Funds for the Central Universities.
    [1]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [2]

    Shalaev V M 2007 Nat. Photonics 1 41

    [3]

    Soukoulis C M, Linden S, Wegener M 2007 Science 315 47

    [4]

    Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902

    [5]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [6]

    Zhang X, Liu Z 2008 Nat. Materials 7 435

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Liu L X,Dong L J, Liu Y H 2012 Acta Phys. Sin. 61 134210 (in Chinese) [刘丽想, 董丽娟, 刘艳红 2012 61 134210]

    [9]

    Alù A, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558

    [10]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [11]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J, Yu M, Egorov A, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112

    [12]

    Jiang Y,Zhang W L,Zhu Y Y 2013 Acta Phys. Sin. 62 167303 (in Chinese) [蒋瑶, 张伟利, 朱叶雨 2013 62 167303]

    [13]

    Lu H, Xue C H, Wu Y G, Chen S Q, Zhang X L, Jiang H T, Tian J G, Chen H 2012 Opt. Commun. 285 5416

    [14]

    Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855

    [15]

    Dong L J, Jiang H T, Chen H, Shi Y L 2010 J. Appl. Phys. 107 093101

    [16]

    Symonds C, Lheureux G, Hugonin J P, Greffet J J, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J 2013 Nano Lett. 13 3179

    [17]

    Oulton1 R F, Sorger1 V J, Zentgraf1 T, Ma R M, Gladden1 C, Dai L, Bartal1G, Zhang X 2009 Nature 461 629

    [18]

    Gazzano O, Vasconcellos S M de, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402

    [19]

    Lu H, Li Y H, Feng T H, Wang S H, Xue C H, Kang X B, Du G Q, Jiang H T, Chen H 2013 Appl. Phys. Lett. 102 111909

    [20]

    Arris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [21]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [22]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103

    [23]

    Guo J Y, Chen H, Li H Q 2008 Chin. Phys. B 17 2544

    [24]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [25]

    Purcell E M 2014 J. Opt. 16 065003

    [26]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099

    [27]

    Du G Q, Jiang H T, Wang Z S, Yang Y P, Wang Z L, Lin H Q, Chen H 2010 J. Opt. Soc. Am. B. 27 1757

    [28]

    Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photonics 2 351

    [29]

    Nezhad M P, Tetz K, Fainman Y 2004 Opt. Express 12 4072

    [30]

    Dong Z G, Liu H, Li T 2009 Phys. Rev. B 80 235116

  • [1]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [2]

    Shalaev V M 2007 Nat. Photonics 1 41

    [3]

    Soukoulis C M, Linden S, Wegener M 2007 Science 315 47

    [4]

    Liu H, Genov D A, Wu D M, Liu Y M, Steele J M, Sun C, Zhu S N, Zhang X 2006 Phys. Rev. Lett. 97 243902

    [5]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [6]

    Zhang X, Liu Z 2008 Nat. Materials 7 435

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Liu L X,Dong L J, Liu Y H 2012 Acta Phys. Sin. 61 134210 (in Chinese) [刘丽想, 董丽娟, 刘艳红 2012 61 134210]

    [9]

    Alù A, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558

    [10]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [11]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J, Yu M, Egorov A, Vasil’ev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112

    [12]

    Jiang Y,Zhang W L,Zhu Y Y 2013 Acta Phys. Sin. 62 167303 (in Chinese) [蒋瑶, 张伟利, 朱叶雨 2013 62 167303]

    [13]

    Lu H, Xue C H, Wu Y G, Chen S Q, Zhang X L, Jiang H T, Tian J G, Chen H 2012 Opt. Commun. 285 5416

    [14]

    Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855

    [15]

    Dong L J, Jiang H T, Chen H, Shi Y L 2010 J. Appl. Phys. 107 093101

    [16]

    Symonds C, Lheureux G, Hugonin J P, Greffet J J, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J 2013 Nano Lett. 13 3179

    [17]

    Oulton1 R F, Sorger1 V J, Zentgraf1 T, Ma R M, Gladden1 C, Dai L, Bartal1G, Zhang X 2009 Nature 461 629

    [18]

    Gazzano O, Vasconcellos S M de, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402

    [19]

    Lu H, Li Y H, Feng T H, Wang S H, Xue C H, Kang X B, Du G Q, Jiang H T, Chen H 2013 Appl. Phys. Lett. 102 111909

    [20]

    Arris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [21]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [22]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H 2010 Nano Lett. 10 1103

    [23]

    Guo J Y, Chen H, Li H Q 2008 Chin. Phys. B 17 2544

    [24]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [25]

    Purcell E M 2014 J. Opt. 16 065003

    [26]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W, Ward C A 1983 Appl. Opt. 22 1099

    [27]

    Du G Q, Jiang H T, Wang Z S, Yang Y P, Wang Z L, Lin H Q, Chen H 2010 J. Opt. Soc. Am. B. 27 1757

    [28]

    Zheludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A 2008 Nat. Photonics 2 351

    [29]

    Nezhad M P, Tetz K, Fainman Y 2004 Opt. Express 12 4072

    [30]

    Dong Z G, Liu H, Li T 2009 Phys. Rev. B 80 235116

  • [1] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [3] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [4] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [5] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] 张若羽, 李培丽, 高辉. 基于光学tamm态的声光开关的研究.  , 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [7] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] 束方洲, 范仁浩, 王嘉楠, 彭茹雯, 王牧. 等离激元材料和器件的动态调控研究进展.  , 2019, 68(14): 147303. doi: 10.7498/aps.68.20190469
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制.  , 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [12] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元.  , 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [13] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究.  , 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [14] 杨晓霞, 孔祥天, 戴庆. 石墨烯等离激元的光学性质及其应用前景.  , 2015, 64(10): 106801. doi: 10.7498/aps.64.106801
    [15] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体.  , 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [16] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应.  , 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [17] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应.  , 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [18] 蒋瑶, 张伟利, 朱叶雨. 非对称DBR-金属-DBR结构的光学Tamm态理论研究.  , 2013, 62(16): 167303. doi: 10.7498/aps.62.167303
    [19] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究.  , 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [20] 任燕如, 尹道乐. 金属中声学等离激元的产生条件.  , 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
计量
  • 文章访问数:  6958
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-29
  • 修回日期:  2014-12-05
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map