搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯等离激元的光学性质及其应用前景

杨晓霞 孔祥天 戴庆

引用本文:
Citation:

石墨烯等离激元的光学性质及其应用前景

杨晓霞, 孔祥天, 戴庆

Optical properties of graphene plasmons and their potential applications

Yang Xiao-Xia, Kong Xiang-Tian, Dai Qing
PDF
导出引用
  • 石墨烯等离激元由于其独特的电学可调性、本征低衰减以及局域光场高度增强等特性, 引起了广泛的关注并迅速成长为一门新的学科分支--石墨烯表面等离激元光子学. 本文介绍了石墨烯等离激元的一些基本性质, 包括色散关系、局域的等离激元和传导的等离激元以及石墨烯等离激元对其周边介电环境的敏感性等. 在此基础上, 进一步介绍了石墨烯等离激元在太赫兹到中红外频段的应用, 比如有源光调制器的一些功能器件和增强的红外光谱探测等.
    Graphene plasmons have aroused a great deal of research interest in recent years due to their unique features such as electrical tunability, ultra-strong field confinement and relatively low intrinsic damping. In this review paper, we summarize the fundamental optical properties of localized and propagating plasmons supported by graphene, and the experimental techniques for excitation and detection of them, with focusing on their dispersion relations and plasmon-phonon coupling mechanism. In general, the dispersion of graphene plasmons is affected by the Fermi level of graphene and the dielectric environment. The graphene plasmons can exist in a broad spectrum range from mid-infrared to terahertz. This has been experimentally verified for both the localized and propagation plasmons in graphene. On the one hand, the excitation frequency and confinement of localized plasmons supported by graphene micro/nano-structures are constrained by the structural geometry. Additionally, influenced from the tunability of the optical conductivity of graphene, the excitation frequency of graphene plasmons can be tuned by electrostatic or chemical doping. On the other hand, propagating plasmons have been launched and detected by using scattering-type scanning near-field optical microscopy. This technique provides the real-space imaging of the electromagnetic fields of plasmons, thereby directly confirming the existence of the graphene plasmons and verifying their properties predicted theoretically. In a similar regime, the launching and controlling of the propagating plasmons have also been demonstrated by using resonant metal antennas. Compared to metal plasmons, graphene plasmons are much more easily affected by the surroundings due to their scattering from impurity charges and coupling with substrate phonons. In particular, graphene plasmons can hybridize strongly with substrate phonons and there are a series of effects on plasmon properties such as resonance frequency, intensity and plasmon lifetime. The designing of the dielectric surrounding can effectively manipulate the graphene plasmons. Finally, we review the emerging applications of graphene plasmon in the mid-infrared and terahertz, such as electro-optical modulators and enhanced mid-infrared spectroscopy.
    • 基金项目: 国家自然科学基金(批准号: 51372045)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51372045).
    [1]

    Prasad P N 2004 Nanophotonics (Hoboken: John Wiley & Sons, Inc.) pp2-7, 129-149

    [2]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)

    [3]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [4]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B Chem. 54 3

    [5]

    Ozbay E 2006 Science 311 189

    [6]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [7]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689

    [8]

    Low T, Avouris P 2014 ACS Nano 2 1086

    [9]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [10]

    Maier S A 2012 Nat. Phys. 8 581

    [11]

    de Abajo F J G 2014 ACS Photon. 1 135

    [12]

    Stauber T 2014 J. Phys.: Condens. Matter 26 123201

    [13]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [14]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [15]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2014 Nat. Mater. DOI:10.1038/nmat4169

    [16]

    Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [18]

    Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [19]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [20]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418

    [21]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [22]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541

    [23]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [24]

    Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro NetoAntonio H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N 2013 Nat. Nano 8 821

    [25]

    Keilmann F, Hillenbrand R 2004 Philos. Trans. Roy. Soc. A 362 787

    [26]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159

    [27]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369

    [28]

    Ong Z Y, Fischetti M V 2012 Phys. Rev. B 86 165422

    [29]

    Liu Y, Willis R F 2010 Phys. Rev. B 81 081406

    [30]

    Koch R J, Seyller T, Schaefer J A 2010 Phys. Rev. B 82 201413

    [31]

    Hwang E H, Sensarma R, Das Sarma S 2010 Phys. Rev. B 82 195406

    [32]

    Jablan M, Soljačć M, Buljan H 2011 Phys. Rev. B 83 161409

    [33]

    Yang X, Kong X T, Bai B, Li Z, Hu H, Qiu X, Dai Q 2014 Small DOI: 101002/smll. 201400515

    [34]

    Fano U 1961 Phys. Rev. 124 1866

    [35]

    Harris S E 1997 Phys. Today 50 36

    [36]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 ACS Nano 6 431

    [37]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394

    [38]

    Vakil A, Engheta N 2011 Science 332 1291

    [39]

    Arrazola I, Hillenbrand R, Nikitin A Y 2014 Appl. Phys. Lett. 104 034507

    [40]

    Kong X T, Bai B, Dai Q 2015 Opt. Lett. 40 1

    [41]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [42]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401

    [43]

    Chen P Y, Alù A 2011 ACS Nano 5 5855

    [44]

    Farhat M, Rockstuhl C, Bağcँ H 2013 Opt. Express 21 12592

    [45]

    Chen L, Zhang T, Li X, Wang G 2013 Opt. Express 21 28628

    [46]

    Liu P H, Cai W, Wang L, Zhang X Z, Xu J J 2012 Appl. Phys. Lett. 100 153111

    [47]

    Ooi K J A, Chu H S, Bai P, Ang L K 2014 Opt. Lett. 39 1629

    [48]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405

    [49]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2013 Nano Lett. 14 299

    [50]

    Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, de Abajo F J G 2013 ACS Nano 7 2388

    [51]

    Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol. 7 330

    [52]

    Adato R, Yanik A A, Amsden J J, Kaplan D L, Omenetto F G, Hong M K, Erramilli S, Altug H 2009 Proc. Natl. Acad. Sci. U.S.A. 106 19227

    [53]

    Yan H, Low T, Guinea F, Xia F, Avouris P 2014 Nano Lett. 14 4581

    [54]

    Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573

    [55]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876

    [56]

    Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439

  • [1]

    Prasad P N 2004 Nanophotonics (Hoboken: John Wiley & Sons, Inc.) pp2-7, 129-149

    [2]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)

    [3]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [4]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B Chem. 54 3

    [5]

    Ozbay E 2006 Science 311 189

    [6]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [7]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689

    [8]

    Low T, Avouris P 2014 ACS Nano 2 1086

    [9]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [10]

    Maier S A 2012 Nat. Phys. 8 581

    [11]

    de Abajo F J G 2014 ACS Photon. 1 135

    [12]

    Stauber T 2014 J. Phys.: Condens. Matter 26 123201

    [13]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [14]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [15]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2014 Nat. Mater. DOI:10.1038/nmat4169

    [16]

    Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [18]

    Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [19]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [20]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418

    [21]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [22]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541

    [23]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [24]

    Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro NetoAntonio H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N 2013 Nat. Nano 8 821

    [25]

    Keilmann F, Hillenbrand R 2004 Philos. Trans. Roy. Soc. A 362 787

    [26]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159

    [27]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369

    [28]

    Ong Z Y, Fischetti M V 2012 Phys. Rev. B 86 165422

    [29]

    Liu Y, Willis R F 2010 Phys. Rev. B 81 081406

    [30]

    Koch R J, Seyller T, Schaefer J A 2010 Phys. Rev. B 82 201413

    [31]

    Hwang E H, Sensarma R, Das Sarma S 2010 Phys. Rev. B 82 195406

    [32]

    Jablan M, Soljačć M, Buljan H 2011 Phys. Rev. B 83 161409

    [33]

    Yang X, Kong X T, Bai B, Li Z, Hu H, Qiu X, Dai Q 2014 Small DOI: 101002/smll. 201400515

    [34]

    Fano U 1961 Phys. Rev. 124 1866

    [35]

    Harris S E 1997 Phys. Today 50 36

    [36]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 ACS Nano 6 431

    [37]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394

    [38]

    Vakil A, Engheta N 2011 Science 332 1291

    [39]

    Arrazola I, Hillenbrand R, Nikitin A Y 2014 Appl. Phys. Lett. 104 034507

    [40]

    Kong X T, Bai B, Dai Q 2015 Opt. Lett. 40 1

    [41]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [42]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401

    [43]

    Chen P Y, Alù A 2011 ACS Nano 5 5855

    [44]

    Farhat M, Rockstuhl C, Bağcँ H 2013 Opt. Express 21 12592

    [45]

    Chen L, Zhang T, Li X, Wang G 2013 Opt. Express 21 28628

    [46]

    Liu P H, Cai W, Wang L, Zhang X Z, Xu J J 2012 Appl. Phys. Lett. 100 153111

    [47]

    Ooi K J A, Chu H S, Bai P, Ang L K 2014 Opt. Lett. 39 1629

    [48]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405

    [49]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2013 Nano Lett. 14 299

    [50]

    Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, de Abajo F J G 2013 ACS Nano 7 2388

    [51]

    Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol. 7 330

    [52]

    Adato R, Yanik A A, Amsden J J, Kaplan D L, Omenetto F G, Hong M K, Erramilli S, Altug H 2009 Proc. Natl. Acad. Sci. U.S.A. 106 19227

    [53]

    Yan H, Low T, Guinea F, Xia F, Avouris P 2014 Nano Lett. 14 4581

    [54]

    Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573

    [55]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876

    [56]

    Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元.  , 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全. 飞秒传输表面等离激元的近场成像表征与激发效率的调控.  , 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控.  , 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控.  , 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 赵林, 冯一军. 介质掺杂近零媒质中光场增强效应及其应用.  , 2020, 69(15): 154101. doi: 10.7498/aps.69.20200147
    [8] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [9] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学.  , 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [10] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [11] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用.  , 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [12] 束方洲, 范仁浩, 王嘉楠, 彭茹雯, 王牧. 等离激元材料和器件的动态调控研究进展.  , 2019, 68(14): 147303. doi: 10.7498/aps.68.20190469
    [13] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [15] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [16] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响.  , 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [17] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦.  , 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [18] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应.  , 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [19] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [20] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应.  , 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
计量
  • 文章访问数:  13498
  • PDF下载量:  2614
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-26
  • 修回日期:  2015-01-06
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map