-
通过负值度和测量诱导的扰动, 研究了非均匀磁场和杂质磁场对自旋为1的Heisenberg系统量子关联的影响. 研究发现非均匀磁场的增加会降低纠缠, 但也可用来产生纠缠, 并且会提高临界非线性作用Kc的值, 测量诱导的扰动的临界磁场要高于负值度的临界磁场, 而且测量诱导的扰动不会随着非线性作用|K| 的减小而消失, 它能全面反映量子关联的存在. 研究还发现, 不同杂质磁场对测量诱导的扰动的影响彼此间无交叉. 杂质磁场下, 相互作用|J| 必须小于非线性作用|K| 才会有纠缠存在, 但是测量诱导的扰动却可以在相互作用|J| 大于非线性作用|K| 时依然存在, |J| 与|K| 相同时只是测量诱导的扰动的最小取值点. 此外, 系统粒子数目对量子关联也具有重要影响.
-
关键词:
- 量子关联 /
- 自旋1系统 /
- 负值度 /
- 非均匀磁场和杂质磁场
We investigate the effects of inhomogeneous magnetic field and magnetic impurity on the quantum correlation in spin-1 system by means of negativity and measurement-induced disturbance. Results show that the increase of the inhomogeneous magnetic field not only decreases entanglement, but also can induce the entanglement, and increases the value of critical nonlinear coupling Kc. The critical magnetic field for measurement-induced disturbance is higher than that for negativity, and the measurement-induced disturbance (MID) will not disappear with the decrease of nonlinear coupling |K|, so it can reveal all the properties of quantum correlation. Results also show that the effects of different magnetic impurity on MID are independent of each other. Under the magnetic impurity, the entanglement exists only if the couplings |J| are less than the nonlinear couplings |K|, while there will be the MID when the couplings |J| are greater than the nonlinear couplings |K|. It is just the minimum point for MID when |J| equals to |K|. Moreover, the size of the Chain will influence the quantum correlation also.-
Keywords:
- quantum correlation /
- spin-1 system /
- negativity /
- inhomogeneous magnetic field and magnetic impurity
[1] Nielsen M A, Chuang I L 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[2] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[3] Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 656
[4] Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370
[5] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S S 1996 Phys. Rev. Lett. 77 2818
[6] Zhang G F, Li S S 2005 Phys. Rev. A 72 034302
[7] Zhang G F 2007 Phys. Rev. A 75 034304
[8] Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207
[9] Jiang C L, Liu X J, Liu M W, Wang Y H, Peng Z H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 61 170302]
[10] Qin M, Bai Z, Li Y B, Lin S J 2011 Opt. Commun. 284 3149
[11] Mohammadia H, Akhtarshenas S J, Kheirandish F 2011 Eur. Phys. J. D 62 439
[12] Datta A, Shajj A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Ollivier H, Zurek W H 2001 Phys. Rev. Lett 88 017901
[14] lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501
[15] Cui J, Fan H 2010 J. Phys. A 43 045305
[16] Zhou T, Long G L, Fu S S, Lsuo S L 2013 Physics 42 544 (in Chinese) [周涛, 龙桂鲁, 傅双双, 骆顺龙 2013 物理 42 544]
[17] Girolami D, Adesso G 2011 Phys. Rev. A 83 052108
[18] Luo S L 2008 Phys. Rev. A 77 022301
[19] Zhang G F, Fan H, Ji A L, Jiang Z T, Abliz A Liu W M 2011 Ann. Phys. 326 2694
[20] Zhang G F, Jiang Z T 2011 Ann. Phys. 326 867
[21] Shen C H, Zhang G F, Fan K M, Zhu H J 2014 Chin Phys B 23 050310
[22] Qin M, Tian D P, Tao Y J 2008 Acta Phys. Sin. 57 5395 (in Chinese) [秦猛, 田东平, 陶应娟 2008 57 5395]
[23] Guo J L, Wang L, Long G L 2013 Ann. Phys. 330 192
[24] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
-
[1] Nielsen M A, Chuang I L 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[2] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[3] Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 656
[4] Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370
[5] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S S 1996 Phys. Rev. Lett. 77 2818
[6] Zhang G F, Li S S 2005 Phys. Rev. A 72 034302
[7] Zhang G F 2007 Phys. Rev. A 75 034304
[8] Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207
[9] Jiang C L, Liu X J, Liu M W, Wang Y H, Peng Z H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 61 170302]
[10] Qin M, Bai Z, Li Y B, Lin S J 2011 Opt. Commun. 284 3149
[11] Mohammadia H, Akhtarshenas S J, Kheirandish F 2011 Eur. Phys. J. D 62 439
[12] Datta A, Shajj A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Ollivier H, Zurek W H 2001 Phys. Rev. Lett 88 017901
[14] lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501
[15] Cui J, Fan H 2010 J. Phys. A 43 045305
[16] Zhou T, Long G L, Fu S S, Lsuo S L 2013 Physics 42 544 (in Chinese) [周涛, 龙桂鲁, 傅双双, 骆顺龙 2013 物理 42 544]
[17] Girolami D, Adesso G 2011 Phys. Rev. A 83 052108
[18] Luo S L 2008 Phys. Rev. A 77 022301
[19] Zhang G F, Fan H, Ji A L, Jiang Z T, Abliz A Liu W M 2011 Ann. Phys. 326 2694
[20] Zhang G F, Jiang Z T 2011 Ann. Phys. 326 867
[21] Shen C H, Zhang G F, Fan K M, Zhu H J 2014 Chin Phys B 23 050310
[22] Qin M, Tian D P, Tao Y J 2008 Acta Phys. Sin. 57 5395 (in Chinese) [秦猛, 田东平, 陶应娟 2008 57 5395]
[23] Guo J L, Wang L, Long G L 2013 Ann. Phys. 330 192
[24] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
计量
- 文章访问数: 6624
- PDF下载量: 360
- 被引次数: 0