-
不确定性原理限制了观察者对两个不相容可观测量的精确测量能力,在量子信息科学领域的量子精密测量中扮演着重要角色.本文研究关联退相位有色噪声通道下两量子比特系统的量子存储支撑熵不确定关系,结合通道连续使用间的关联性和动力学演化中的非马尔科夫性调控熵不确定度及其下限.分别选取最大纠缠态和可分离态作为系统的初态,通过调节关联强度和非马尔科夫性发现:完全关联通道可以最大程度地抑制退相干,降低熵不确定度及其下限,此时非马尔科夫效应不发挥作用;部分关联通道与非马尔科夫效应结合可以在演化中某些时刻更有效的降低熵不确定度及其下限;长时间演化后,系统的熵不确定度及下限达到稳定值,且稳定值只与通道的关联强度有关,通道的关联性越强,稳态的熵不确定度及下限越低.最后分析熵不确定性及其下限降低的物理本质,发现熵不确定度及其下限的降低源于系统量子关联的增加.The uncertainty principle which restricts the observer’s ability to make precise measurements of two incompatible observables plays a crucial role in quantum precision measurement within the field of quantum information science. When quantum systems interact with their surroundings, they inevitably result in decoherence, which increases the uncertainty of the system. In the process of quantum information processing, the effective regulation of uncertainty becomes a key problem to be solved. In this work, we investigate the quantum-memory-assisted entropic uncertainty relation of a two-qubit system under correlated channels with dephasing colored noise. We demonstrate that it is possible to control the entropic uncertainty, denoted as U, and its lower bound, Ub, by combining correlations between successive uses of channels and the non-Markovianity of the dynamical evolution. Firstly, the evolutionary characteristics of the trace distance are employed to distinguish between Markovianity and non-Markovianity of the channel. Subsequently, the system is selected to be either a maximally entangled or separated state initially. By adjusting the strength of the correlations h, we find that with the increase of η, the entropic uncertainty and its lower bound decrease. Especially, if the channel is fully correlated (η = 1), the entropic uncertainty and its lower bound remain constant under the channel, indicating that decoherence is completely suppressed. A comparison of Markovian and non-Markovian channels reveals that the entropic uncertainty and its lower bound exhibit oscillatory behaviour under non-Markovian channels. The combination of correlations and non-Markovianity of the channel demonstrates that the entropic uncertainty and its lower bound can be reduced under fully correlated channels where the non-Markovianity has no effect. This is because fully correlated channels suppress decoherence to the greatest extent. Under partially correlated channels, the combination of correlations and non-Markovianity can result in a more effective reduction in the entropic uncertainty and its lower bound. Under such channels, correlations of the channel decrease the entropic uncertainty and its lower bound during the whole evolution, while the non-Markovianity contributes to the oscillations of them and reduce them in some specific time. Furthermore, the results show that the entropic uncertainty and its lower bound reach steady values that depend only on the strength of the correlations after long-time evolution. In other words, the stronger the correlations, the lower the entropic uncertainty and its lower bound of steady states. Finally, we analyse the physical nature of the decrease of the entropic uncertainty and its lower bound, and it is found that the decrease of the entropic uncertainty and its lower bound is due to the increase of the quantum correlations in the system.
-
Keywords:
- Uncertainty relation /
- Correlated channel /
- Non-Markovianity /
- Quantum correlation
-
[1] Heisenberg W 1927 Z. Phys. 43172
[2] Robertson H P 1929 Phys. Rev. 34163
[3] Deutsch D 1983 Phys. Rev. Lett. 50631
[4] Kraus K 1987 Phys. Rev. D 353070
[5] Maassen H, Uffink J B M 1988 Phys. Rev. Lett. 601103
[6] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6659
[7] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7757
[8] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7752
[9] Shi J, Ding Z, Wu T, He J, Yu L, Sun W, Wang D and Ye L 2017 Laser Phys. Lett. 14125208
[10] Hall M J W, Cerf N J 2012 New J. Phys. 14033040
[11] Ekert A K 1991 Phys. Rev. Lett 67661
[12] Renes J M, Boileau J C 2009 Phys. Rev. Lett 103020402
[13] Haseli S, Dolatkhah H, Rangani Jahromi H, Salimi S, Khorashad A S 2020 Opt. Commun. 461125287
[14] Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3634
[15] Ng N H Y, Berta M, Wehner S 2012 Phys. Rev. A 86042315
[16] Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17267
[17] Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133114802
[18] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14055205
[19] Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80800
[20] Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 8172
[21] Wang T Y, Wang D 2024 Phys. Lett. B 855138876
[22] Wang T Y, Wang D 2014 Phys. Lett. A 499129364
[23] Wu L, Ye L, Wang D 2022 Phys. Rev. A 106062219
[24] Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104062204
[25] Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102012206
[26] Bouafia Z, Oumennana M, Mansour M, Ouchni F 2024 Appl. Phys. B 13094
[27] Abdel-Wahab N H, Ibrahim T A S, Amin M E, Salah A 2024 Eur. Phys. J. D 7828
[28] Macchiavello C, Palma G M 2002 Phys. Rev. A 65050301
[29] D'Arrigo A, Benenti G, Falci G 2007 New. J. Phys. 9310
[30] D'Arrigo A, Benenti G, Falci G 2013 Phys. Rev. A 88042337
[31] Sk R, Panigrehi P K 2024 Phys. Rev. A 109032425
[32] Guo Y N, Fang M F, Wang G Y, Zeng K 2016 Quantum Inf. Process. 155129-5144
[33] Peng Z Y, Wu F L, Li J, Xue H N, Liu S Y, Wang Z Y 2023 Phys. Rev. A 107022405
[34] Yu M, Guo Y N 2024 Int. J. Theor. Phys 63156
[35] Xie Y X, Qin Z Y 2020 Quantum Inf. Process. 19375
[36] Dong Yao, Ji A L, Zhang G F 2022 Acta Phys. Sin. 71070303(in Chinese) [董曜、纪爱玲、张国锋 2022 71070303]
[37] Zhang D H, Wu F L, Peng Z Y, Wang L, Liu S Y 2023 Quantum Inf. Process. 22102
[38] Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100052305
[39] Haseli S, Hadipour M 2022 Int. J. Theor. Phys 61117
[40] Awasthi N, Joshi D K, Sachdev S 2022 Int. J. Theor. Phys 61123
[41] Hou L, Zhang Y N, Zhu Y G 2024 Int. J. Theor. Phys 62221
[42] Lindblad G 1976 Comm. Math. Phys 48119-130
[43] Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101150402
[44] Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 910
[45] Hwang B, Goan H S 2012 Phys. Rev. A 85032321
[46] Banu H, Rao K R 2024 Eur. Phys. J. Plus 139436
[47] Addis C, Karpat G, Macchiavello C, Maniscalco 2016 Phys. Rev. A 94032121
[48] AWasthi N, Haseli S, Johri U C, Salimi S, Dolatkhah H 2020 Quantum Inf. Process. 1910
[49] Wang G Y, Guo Y N, Zeng K 2018 Journal of Modern Optics 66367-376
[50] Li L J, Ming F, Song X K, Liu Y, Wang Dong 2022 Acta Phys. Sin. 71070302(in Chinese) [李丽娟、明飞、 宋学科、叶柳、王栋 2022 71070302]
[51] Hajihoseinlou H, Ahansaz B 2024 Laser Phys. 34075202
[52] Daffer S, Wodkiewicz K, Cresser J D, McIver J K 2004 Phys. Rev. A 70010304(R)
[53] Cai X 2020 Sci. Rep. 1088
[54] Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103210401
[55] Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383977-984
[56] Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J Dong, Ye L, Kais S 2017 Sci. Rep. 71066
[57] Xu Z Y, Yang W L, Feng M 2012 Phys. Rev. A 86012113
[58] Hu M L, Zhou W 2019 Laser Phys. Lett. 16045201
[59] Hu M L, Fan H 2020 Sci. China-Phys. Mech. Astron 63230322
[60] Hu M L, Zhang Y H, Fan H 2021 Chin. Phys. B 30030308
[61] Wootters W K 1998 Phys. Rev. Lett. 802245
[62] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88017901
[63] Mazzola L, Piilo J, Maniscalco S 2011 Int. J. Quantum Inf. 09981-991
[64] Pati A K, Wilde M M, Devi A R U, Rajagopal A K, Sudha 2012 Phys. Rev. A 86042105
[65] Hu M L, Fan H 2013 Phys. Rev. A 88014105
[66] Hu M L, Fan H 2013 Phys. Rev. A 87022314
计量
- 文章访问数: 115
- PDF下载量: 4
- 被引次数: 0