-
基于kp微扰理论框架, 研究建立了单轴张/压应变Si, Si基双轴应变p型金属氧化物半导体(PMOS)反型层空穴量子化有效质量与空穴面内电导率有效质量模型. 结果表明: 对于单轴应力PMOS, 选择单轴压应力可有效增强器件的性能; 同等增强PMOS空穴迁移率, 需要施加的单轴力强度小于双轴力的强度; 在选择双轴应力增强器件性能时, 应优先选择应变Si1-xGex作为沟道材料. 所获得的量化理论结论可为Si基及其他应变器件的物理理解及设计提供重要理论参考.
-
关键词:
- 应变 /
- p型金属氧化物半导体 /
- 沟道 /
- 设计
Within the framework of k p perturbation theory, models of the hole quantization and conductivity effective mass for the inversion layer in uniaxially tensile/compressive and Si-based baixially strained p-channel metal-oxid-semiconductor (PMOS) have been established. Results show that: 1) uniaxially compressive technique should be chosen for the carrier mobility enhancement in uniaxially strained PMOS; 2) the magnitude of uniaxial stress will be less than that of the biaxial case to improve PMOS performance using strained technique; 3) strained Si1-xGex is preferred to use instead of using strained Si, when we choose the biaxially strained materials for the PMOS channel. Our results can provide valuable references to Si-based and other strained device and materials design.-
Keywords:
- strain /
- p-channel metal-oxid-semiconductor /
- channel /
- design
[1] Wu W R, Liu Ch, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714
[2] Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509
[3] EngSiew K A, Sohail I R 2013 J. Comput. Theor. Nanos 10 1231
[4] Song J J, Yang C, Zhu H, Zhang H M, Xuan R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 63 118501]
[5] Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. 16 3827
[6] Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Sci. China: Phys. Mech. 55 1399
[7] Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 61 057304]
[8] Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301
[9] Huang S H, Lu T M, Lu S C, Lee C H, Liu C W, Tsui D C 2012 Appl. Phys. Lett. 101 042111
[10] Wang E X, Matagne P, Shifren L 2006 IEEE Trans. Electron Dev. 53 1840
[11] Hou Y T, Li M F 2001 IEEE Trans. Electron Dev. 48 2893
[12] Chaudhry A, Sangwan S 2013 J. Comput. Theor. Nanos 10 1085
[13] Li S J, Chang C C, Tsai Y T 2006 Int. J. Numer. Model. Eletron. 19 229
[14] Ma Y T, Li Z J, Liu L T, Yu Z P 2001 Solid State Electron 45 267
[15] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 57 7228]
[16] Sun Y, Thompson S E, Nishida T 2007 J. Appl. Phys. 101 104503
-
[1] Wu W R, Liu Ch, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electron Dev. Lett. 35 714
[2] Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509
[3] EngSiew K A, Sohail I R 2013 J. Comput. Theor. Nanos 10 1231
[4] Song J J, Yang C, Zhu H, Zhang H M, Xuan R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 63 118501]
[5] Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. 16 3827
[6] Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Sci. China: Phys. Mech. 55 1399
[7] Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 61 057304]
[8] Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301
[9] Huang S H, Lu T M, Lu S C, Lee C H, Liu C W, Tsui D C 2012 Appl. Phys. Lett. 101 042111
[10] Wang E X, Matagne P, Shifren L 2006 IEEE Trans. Electron Dev. 53 1840
[11] Hou Y T, Li M F 2001 IEEE Trans. Electron Dev. 48 2893
[12] Chaudhry A, Sangwan S 2013 J. Comput. Theor. Nanos 10 1085
[13] Li S J, Chang C C, Tsai Y T 2006 Int. J. Numer. Model. Eletron. 19 229
[14] Ma Y T, Li Z J, Liu L T, Yu Z P 2001 Solid State Electron 45 267
[15] Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 57 7228]
[16] Sun Y, Thompson S E, Nishida T 2007 J. Appl. Phys. 101 104503
计量
- 文章访问数: 6679
- PDF下载量: 371
- 被引次数: 0