-
将SOI技术优势引入SiGe HBT,可满足当前BiCMOS高速低功耗的应用需求. SOI SiGe HBT作为BiCMOS工艺的核心器件,其频率特性决定了电路所能达到的工作速度. 为此,本文针对所提出的SOI SiGe HBT 器件结构,重点研究了该器件的频率特性,并通过所建立的集电区电容模型予以分析. 规律和结果为:1)SOI SiGe HBT特征频率随集电区掺杂浓度的升高而增加;2)SOI SiGe HBT特征频率与集电极电流IC之间的变化规律与传统SiGe HBT的相一致;3)正常工作状态,SOI SiGe HBT(集电区3×1017 cm-3 掺杂)最高振荡频率fmax大于140 GHz,且特征频率fT大于60 GHz. 与传统SiGe HBT相比,特征频率最大值提高了18.84%. 以上规律及结论可为SOI SiGe HBT及BiCMOS的研究设计提供重要依据.Lately much interest is focused on SOI SiGe HBT in high-speed low-power BiCMOS applications. The frequency characteristics of the core device, SOI SiGe HBT in BiCMOS, determine its operating speed. So, this paper studies the frequency characteristics of SOI SiGe HBT on the basis of our proposed device structure, and analyzes the frequency characteristics in terms of the collector capacitance model we established. It is found that: 1) The characteristic frequency of SOI SiGe HBT increases with increasing doping concentration in the collector; 2) variations between the characteristic frequency and collector current of SOI SiGe HBT are consistent with those of the traditional SiGe HBT; 3) under the normal operating conditions, the maximum oscillation frequency of SOI SiGe HBT (a collector region with 3×1017 cm-3 dopant) is greater than 140 GHz, and the characteristic frequency is greater than 60 GHz. Compared with the traditional SiGe HBT, the maximum value of the characteristic frequency is increased by 18.84%. The conclusions above can provide important references to the design and research of SOI SiGe HBT and BiCMOS.
[1] Seth S, Song P, Cressler J D, Babcock J A 2011 IEEE T. Electron Dev. 59 2531
[2] Peng C, Seth S, Cressler J D, Cestra G, Krakowski T, Babcock J A, Buchholz A 2011 IEEE T. Electron Dev. 58 2573
[3] Hermann P, Hecker M, Renn F, Rlke M, Kolanek K, Rinderknecht J, Eng L M 2011 J. Appl. Phys. 109
[4] Zhang B, Yang Y T, Li, Y J, Xu X B 2012 Acta Phys. Sin. 61 238502 (in Chinese)[张滨, 杨银堂, 李跃进, 徐小波 2012 61 238502]
[5] Wilcox E P, Phillips S D, Cheng P, Thrivikraman T, Madan A, Cressler J D, Vizkelethy G, Marshall P W, Marshall C, Babcock J A, Kruckmeyer K, Eddy R, Cestra G, Zhang B Y 2010 IEEE T. Nucl. Sci. 57 3293
[6] Avenier G, Fregonese S, Chevalier P, Bustos J, Saguin F, Schwartzmann T, Maneux C, Zimmer T, Chantre A 2008 IEEE T. Electron Dev. 55 585
[7] Bellini M, Phillips S D, Diestelhorst R M, Cheng P, Cressler J D, Marshall P W, Turowski M, Avenier G, Chantre A, Chevalier P 2008 IEEE T. Nucl Sci. 55 3197
[8] Fregonese S, Avenier G, Maneux C, Chantre A, Zimmer T 2005 IEEE T. Electron Dev. 53 296
[9] Xu X B, Zhang H M, Hu H Y, Ma J L, Xu L J 2011 Chin. Phys. B 20 018502
[10] Xu X B, Zhang H M, Hu H Y, Ma J L 2011 Chin. Phys. B 20 058502
[11] Xu X B, Zhang H M, Hu H Y, Qu J T 2011 Chin. Phys. B 20 058503
-
[1] Seth S, Song P, Cressler J D, Babcock J A 2011 IEEE T. Electron Dev. 59 2531
[2] Peng C, Seth S, Cressler J D, Cestra G, Krakowski T, Babcock J A, Buchholz A 2011 IEEE T. Electron Dev. 58 2573
[3] Hermann P, Hecker M, Renn F, Rlke M, Kolanek K, Rinderknecht J, Eng L M 2011 J. Appl. Phys. 109
[4] Zhang B, Yang Y T, Li, Y J, Xu X B 2012 Acta Phys. Sin. 61 238502 (in Chinese)[张滨, 杨银堂, 李跃进, 徐小波 2012 61 238502]
[5] Wilcox E P, Phillips S D, Cheng P, Thrivikraman T, Madan A, Cressler J D, Vizkelethy G, Marshall P W, Marshall C, Babcock J A, Kruckmeyer K, Eddy R, Cestra G, Zhang B Y 2010 IEEE T. Nucl. Sci. 57 3293
[6] Avenier G, Fregonese S, Chevalier P, Bustos J, Saguin F, Schwartzmann T, Maneux C, Zimmer T, Chantre A 2008 IEEE T. Electron Dev. 55 585
[7] Bellini M, Phillips S D, Diestelhorst R M, Cheng P, Cressler J D, Marshall P W, Turowski M, Avenier G, Chantre A, Chevalier P 2008 IEEE T. Nucl Sci. 55 3197
[8] Fregonese S, Avenier G, Maneux C, Chantre A, Zimmer T 2005 IEEE T. Electron Dev. 53 296
[9] Xu X B, Zhang H M, Hu H Y, Ma J L, Xu L J 2011 Chin. Phys. B 20 018502
[10] Xu X B, Zhang H M, Hu H Y, Ma J L 2011 Chin. Phys. B 20 058502
[11] Xu X B, Zhang H M, Hu H Y, Qu J T 2011 Chin. Phys. B 20 058503
计量
- 文章访问数: 7309
- PDF下载量: 532
- 被引次数: 0