-
利用无催化选区金属有机化学气相沉积(SA-MOCVD)法在GaAs(111)B衬底上分别制备了GaAs纳米线和GaAs/InxGa1-xAs/GaAs纳米线径向异质结构. 系统地研究了生长条件对GaAs纳米线生长的影响. 实验结果显示,GaAs纳米线的形貌和长度依赖于生长温度、AsH3 的分压以及SiO2 掩膜表面的圆孔直径. 因此可以通过调节以上因素来得到高质量的GaAs纳米线. 并且发现扩散是影响无催化选区生长GaAs纳米线的主要机理. 微区光致发光谱(μ-PL)表明,GaAs/InxGa1-xAs/GaAs纳米线径向异质结构被成功合成,室温(300 K)下它的发光波长为913 nm. 这些结果对于GaAs纳米线及其异质结构制备的进一步研究及其在光电子器件中的应用具有很好的参考价值.
-
关键词:
- GaAs纳米线 /
- 无催化选区生长 /
- 金属有机化学气相沉积法
We have investigated the catalyst-free selective-area growth of GaAs and GaAs/InxGa1-xAs/GaAs (0x3. GaAs nanowire length would become longer by reducing the mask opening size. Thus we can form the GaAs nanowire uniform arrays with appropriate length and width by controling growth conditions and mask opening size. Then the photoluminescence measurement of GaAs/InxGa1-xAs/GaAs (0x<1) core-shell nanowires is carried out.-
Keywords:
- GaAs nanowires /
- no catalyst selective-area growth /
- metal organic chemical vapor deposition (MOCVD)
[1] Yang P, Yan P, Fardy M 2010 Nano Lett. 10 1529
[2] Tsakalakos L, Balch J, Fronheiser J, Korevaar B A, Sulima O, Rand J 2007 Appl. Phys. Lett. 91 233117
[3] Zimmler M A, Voss T, Ronning C, Capasso F 2009 Appl. Phys. Lett. 94 241120
[4] Duan X, Huang Y, Agarwal R, Lieber M 2003 Nature 421 241
[5] Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta. Phys. Sin. 60 036103 (in Chinese)[叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 60 036103]
[6] Plissard S, Larrieu G, Wallart X, Caroff P 2011 Nanotechnology 22 275602
[7] Yan X, Zhang X, Li J S, L X L, Ren X M, Huang Y Q 2013 Chin. Phys. B 22 076102
[8] Lv X L, Zhang X, Yan X, Liu X L, Cui J G, Li J S, Huang Y Q, Ren X M 2012 Chin. Phys. Lett. 29 126102
[9] Mårtensson T, Carlberg P, Borgström M, Montelius L, Seifert W, Samuelson L 2004 Nano Lett. 4 699
[10] Noborisaka J, Motohisa J, Fukui T 2005 Appl. Phys. Lett. 86 213102
[11] Paetzelt H, Gottschalch V, Bauer J, Benndorf G, Wagner G 2008 J. Cryst. Growth 310 5093
[12] Ikejiri K, Noborisaka J, Hara S, Motohisa J, Fukui T 2007 J. Cryst. Growth 298 616
[13] Noborisaka J, Motohisa J, Hara S, Fukui T 2005 Appl. Phys. Lett. 87 093109
[14] Hua B, Motohisa J, Ding Y, Hara S, Fukui T 2007 Appl. Phys. Lett. 91 131112
[15] Yang L, Noborisaka J, Takeda J, Tomioka K, Fukui T 2006 Appl. Phys. Lett. 89 203110
[16] Huang H, Ren X M, Ye X, Guo J, Wang Q, Zhang X, Cai S, Huang Y 2010 Nanotechnology 21 475602
[17] Haas F, Sladek K, Winden A, Ahe M, Weirich T E, Rieger T, Lth H, Schäpers Th, Hardtdegen H 2013 Nanotechnology 24 085603
[18] Borgström M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth 260 18
[19] Soci C. Bao X, Aplin D, Wang D 2008 Nano Lett. 8 4275
[20] Biegelsen D K, Bringans R D, Northrup J E, Swartz L E 1990 Phys. Rev. Lett. 65 452
[21] Tatematsu H, Sano K, Akiyama T, Nakamura K, Ito T 2008 Phys. Rev. B 77 233306
[22] Jin M T, Shu H B, Liang P, Cao D, Chen X S, Lu W 2013 J. Phys. Chem. C 177 23349
[23] Goto H, Nosaki K, Tomioka K, Hara S, Hiruma K, Motohisa J, Fukui T 2009 Appl. Phys. Express 2 035004
[24] Kim Y, Joyce J, Gao Q, Tan H, Jagadish C, Paladugu M, Zou J, Suvorova A A 2006 Nano Lett. 6 599
-
[1] Yang P, Yan P, Fardy M 2010 Nano Lett. 10 1529
[2] Tsakalakos L, Balch J, Fronheiser J, Korevaar B A, Sulima O, Rand J 2007 Appl. Phys. Lett. 91 233117
[3] Zimmler M A, Voss T, Ronning C, Capasso F 2009 Appl. Phys. Lett. 94 241120
[4] Duan X, Huang Y, Agarwal R, Lieber M 2003 Nature 421 241
[5] Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta. Phys. Sin. 60 036103 (in Chinese)[叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 60 036103]
[6] Plissard S, Larrieu G, Wallart X, Caroff P 2011 Nanotechnology 22 275602
[7] Yan X, Zhang X, Li J S, L X L, Ren X M, Huang Y Q 2013 Chin. Phys. B 22 076102
[8] Lv X L, Zhang X, Yan X, Liu X L, Cui J G, Li J S, Huang Y Q, Ren X M 2012 Chin. Phys. Lett. 29 126102
[9] Mårtensson T, Carlberg P, Borgström M, Montelius L, Seifert W, Samuelson L 2004 Nano Lett. 4 699
[10] Noborisaka J, Motohisa J, Fukui T 2005 Appl. Phys. Lett. 86 213102
[11] Paetzelt H, Gottschalch V, Bauer J, Benndorf G, Wagner G 2008 J. Cryst. Growth 310 5093
[12] Ikejiri K, Noborisaka J, Hara S, Motohisa J, Fukui T 2007 J. Cryst. Growth 298 616
[13] Noborisaka J, Motohisa J, Hara S, Fukui T 2005 Appl. Phys. Lett. 87 093109
[14] Hua B, Motohisa J, Ding Y, Hara S, Fukui T 2007 Appl. Phys. Lett. 91 131112
[15] Yang L, Noborisaka J, Takeda J, Tomioka K, Fukui T 2006 Appl. Phys. Lett. 89 203110
[16] Huang H, Ren X M, Ye X, Guo J, Wang Q, Zhang X, Cai S, Huang Y 2010 Nanotechnology 21 475602
[17] Haas F, Sladek K, Winden A, Ahe M, Weirich T E, Rieger T, Lth H, Schäpers Th, Hardtdegen H 2013 Nanotechnology 24 085603
[18] Borgström M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth 260 18
[19] Soci C. Bao X, Aplin D, Wang D 2008 Nano Lett. 8 4275
[20] Biegelsen D K, Bringans R D, Northrup J E, Swartz L E 1990 Phys. Rev. Lett. 65 452
[21] Tatematsu H, Sano K, Akiyama T, Nakamura K, Ito T 2008 Phys. Rev. B 77 233306
[22] Jin M T, Shu H B, Liang P, Cao D, Chen X S, Lu W 2013 J. Phys. Chem. C 177 23349
[23] Goto H, Nosaki K, Tomioka K, Hara S, Hiruma K, Motohisa J, Fukui T 2009 Appl. Phys. Express 2 035004
[24] Kim Y, Joyce J, Gao Q, Tan H, Jagadish C, Paladugu M, Zou J, Suvorova A A 2006 Nano Lett. 6 599
计量
- 文章访问数: 5749
- PDF下载量: 327
- 被引次数: 0