-
采用金属有机物化学气相沉积技术生长了不同掺杂浓度的GaN薄膜, 并且通过霍尔效应测试和塞贝克效应测试, 表征了室温下GaN薄膜的载流子浓度、迁移率和塞贝克系数. 在实验测试的基础上, 计算了GaN薄膜的热电功率因子, 并且结合理论热导率确定了室温条件下GaN薄膜的热电优值(ZT). 研究结果表明: GaN薄膜的迁移率随着载流子浓度的增加而减小, 电导率随着载流子浓度的增加而增加; GaN 薄膜材料的塞贝克系数随载流子浓度的增加而降低, 其数量级在100–500 μV/K范围内; GaN薄膜材料在载流子浓度为1.60×1018 cm-3时, 热电功率因子出现极大值4.72×10-4 W/mK2; 由于Si杂质浓度的增加, 增强了GaN薄膜中的声子散射, 使得GaN薄膜的热导率随着载流子浓度的增加而降低. GaN薄膜的载流子浓度为1.60×1018 cm-3时, 室温ZT达到极大值0.0025.The GaN thin films with different doping concentrations are grown by metal organic chemical vapor deposition. Carrier concentrations, mobilities and Seebeck coefficients of the GaN thin films are measured by Hall and Seebeck system at room temperature. The power factor and the thermoelectric figure of merit are calculated by experimental and theoretical data. The mobility and Seebeck coefficient of GaN thin film decrease with the increase of carrier concentration. The conductivity of GaN thin film increases with the increase of carrier concentration. The Seebeck coefficient of GaN thin film varies from 100 to 500 μV/K, depending on carrier concentration. The highest power factor is 4.72×10-4 W/mK2 when the carrier concentration is 1.60×1018 cm-3. The thermal conductivity of GaN thin film decreases with the increase of carrier concentration due to the increase of phonon scattering. The largest thermoelectric figure of merit of the GaN thin film at room temperature is 0.0025 when the carrier concentration is 1.60×1018 cm-3.
-
Keywords:
- GaN thin films /
- thermoelectric properties
[1] Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[3] Wang S F, Chen S S, Chen J C, Yan G Y, Qiao X Q, Liu F Q, Wang J L, Ding X C, Fu G S 2012 Acta Phys. Sin. 61 066804 (in Chinese) [王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生 2012 61 066804]
[4] Lu N, Ferguson I 2013 Semi. Sci. Technol. 28 074023
[5] Wu Z H, Xie H Q, Zeng Q F 2013 Acta Phys. Sin. 62 097301 (in Chinese) [吴子华, 谢华清, 曾庆峰 2013 62 097301]
[6] Wang B Z, Wang X L, Wang X Y, Guo L C, Wang X H, Xiao H L, Liu H X 2007 J. Phys. D: Appl. Phys. 40 765
[7] Wang B Z, Wang X L, Hu G X, Ran J X, Wang X H, Guo L C, Xiao H L, Li J P, Zeng Y P, Li J M, Wang Z G 2006 Chin. Phys. Lett. 23 2187
[8] Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014 Acta Phys. Sin. 63 207304 (in Chinese) [刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云 2014 63 207304]
[9] Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307
[10] Sztein A, Ohta H, Sonoda J, Ramu A, Bowers J E, DenBaars S P, Nakamura S 2009 Appl. Phys. Express 2 111003
[11] Wu W T, Wu K C, Ma Z J, Sa R J, Wei Y Q, Li Q H 2012 Chin. J. Struct. Chem. 31 1631
[12] Sztein A, Haberstroh J, Bowers J E, DenBaars S P, Nakamura S 2013 J. Appl. Phys. 113 183707
[13] Hurwitz E, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I 2011 J. Electron. Mater. 40 513
[14] Zhang J, Kutlu S, Liu G Y, Tansu S 2011 J. Appl. Phys. 110 043710
[15] Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S 2011 J. Appl. Phys. 110 123709
[16] You J H, Lu J Q, Johnson H T 2006 J. Appl. Phys. 99 033706
[17] Brandt M S, Herbst P, Angerer A, Ambacher O, Stutzmann M 1998 Phys. Rev. B 58 7786
[18] Zou J, Kotchetkov D, Balandin A A, Florescu D I, Pollak F H 2002 J. Appl. Phys. 92 2534
-
[1] Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[3] Wang S F, Chen S S, Chen J C, Yan G Y, Qiao X Q, Liu F Q, Wang J L, Ding X C, Fu G S 2012 Acta Phys. Sin. 61 066804 (in Chinese) [王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生 2012 61 066804]
[4] Lu N, Ferguson I 2013 Semi. Sci. Technol. 28 074023
[5] Wu Z H, Xie H Q, Zeng Q F 2013 Acta Phys. Sin. 62 097301 (in Chinese) [吴子华, 谢华清, 曾庆峰 2013 62 097301]
[6] Wang B Z, Wang X L, Wang X Y, Guo L C, Wang X H, Xiao H L, Liu H X 2007 J. Phys. D: Appl. Phys. 40 765
[7] Wang B Z, Wang X L, Hu G X, Ran J X, Wang X H, Guo L C, Xiao H L, Li J P, Zeng Y P, Li J M, Wang Z G 2006 Chin. Phys. Lett. 23 2187
[8] Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014 Acta Phys. Sin. 63 207304 (in Chinese) [刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云 2014 63 207304]
[9] Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307
[10] Sztein A, Ohta H, Sonoda J, Ramu A, Bowers J E, DenBaars S P, Nakamura S 2009 Appl. Phys. Express 2 111003
[11] Wu W T, Wu K C, Ma Z J, Sa R J, Wei Y Q, Li Q H 2012 Chin. J. Struct. Chem. 31 1631
[12] Sztein A, Haberstroh J, Bowers J E, DenBaars S P, Nakamura S 2013 J. Appl. Phys. 113 183707
[13] Hurwitz E, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I 2011 J. Electron. Mater. 40 513
[14] Zhang J, Kutlu S, Liu G Y, Tansu S 2011 J. Appl. Phys. 110 043710
[15] Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S 2011 J. Appl. Phys. 110 123709
[16] You J H, Lu J Q, Johnson H T 2006 J. Appl. Phys. 99 033706
[17] Brandt M S, Herbst P, Angerer A, Ambacher O, Stutzmann M 1998 Phys. Rev. B 58 7786
[18] Zou J, Kotchetkov D, Balandin A A, Florescu D I, Pollak F H 2002 J. Appl. Phys. 92 2534
计量
- 文章访问数: 6778
- PDF下载量: 351
- 被引次数: 0