-
采用粗粒化模型,应用分子动力学方法研究了单个纳米粒子对聚合物结晶行为的影响. 通过改变纳米粒子与聚合物单体之间作用方式(吸引作用或排斥作用)、纳米粒子与聚合物单体之间作用强度和聚合物分子链的长度,计算整个系统和局部区域的有序参数,研究了三个不同因素下纳米粒子对聚合物结晶行为的不同影响. 研究表明,在聚合物基体中添加单个纳米粒子,纳米粒子对整个系统的结晶影响不明显,但是纳米粒子对其周围聚合物单体的结晶存在局部强化作用. 当纳米粒子与聚合物单体之间为吸引作用且作用强度较大时,纳米粒子对聚合物结晶表现出明显的局部强化作用,聚合物分子链长度也有着一定的影响,在较大吸引作用强度下,长链样本比短链样本有着更为显著的局部强化作用.
-
关键词:
- 纳米粒子/聚合物系统 /
- 半晶态 /
- 结晶行为 /
- 分子动力学模拟
Molecular dynamics simulation with a coarse grain model is performed to study the influence of single nanoparticle on the polymer crystallization behavior. By changing the mode of action of the polymer-nanoparticle (i.e. attraction or repulsion), the strength of the polymer-nanoparticle interactions, as well as the chain length of the polymer molecular, and by calculating the bond order parameter to characterize the influence in the cooling process, different effects of single nanoparticle on the polymer crystallization behavior are studied. This study has shown that the nanoparticle has no obvious effect on the whole polymer system composed of single nanoparticles. However, nanoparticles can promote the degree of order of polymer chains in crystallization process and enhance partially the polymer crystallization. Under the attraction and strong strength of the polymer-nanoparticle interaction, it is found that obviously the nanoparticle enhances the polymer crystallization partially. Furthermore, the chain length of the polymer molecular also shows some effect on the crystallization and the long-chain sample has a better enhancement for the polymer crystallization than the short-chain one under a strong attraction strength.-
Keywords:
- nanoparticle/polymer systems /
- semi-crystalline /
- crystallization behavior /
- molecular dynamics simulation
[1] Jancar J, Douglas J F, Starr F W, Kumar S K, Cassagnau P, Lesser A J, Sternstein S S, Buehler M J 2010 Polymer 51 3321
[2] Gao X, Jin M N, Bu H S 2000 J. Polym. Sci. Part B: Polym. Phys 38 3285
[3] Mucha M, Marszalek J, Fidrych A 2000 Polymer 41 4137
[4] Kim S H, Ahn S H, Hirai T 2003 Polymer 44 5625
[5] Zhou X M, Chen X M, Wu X B, Shui J P, Zhu Z G 2011 Acta Phys. Sin. 60 036102 (in Chinese) [周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚 2011 60 036102]
[6] Strobl G 2000 Eur. Phys. J. E 3 165
[7] Starr F W, Schrøder T B, Glotzer S C 2002 Macromolecules 35 4481
[8] Rittigstein P, Torkelson J M 2006 J. Polym. Sci. Part B: Polym. Phys. 44 2935
[9] LeBaron P C, Wang Z, Pinnavaia T J 1999 Appl. Clay Sci. 15 11
[10] Andrews R, Weisenberger M C 2004 Curr. Opin. Solid State Mat. Sci. 8 31
[11] Sahoo N G, Rana S, Cho J W, Li L, Chan S H 2010 Prog. Polym. Sci. 35 837
[12] Wu X B, Shang S Y, Xu Q L, Shui J P, Zhu Z G 2007 Acta Phys. Sin. 56 4798 (in Chinese) [吴学邦, 尚淑英, 许巧玲, 水嘉鹏, 朱震钢 2007 56 4798]
[13] Smith J S, Bedrov D, Smith G D 2003 Compos. Sci. Technol. 63 1599
[14] Brown D 2007 Macromolecules 41 1499
[15] Wu X B, Xu Q L, Shang S Y, Shui J P 2008 Chin. Phys. Lett. 25 1338
[16] Liu J, Gao Y Y, Cao D P, Zhang L Q, Guo Z H 2011 Langmuir 27 7926
[17] Liu J, Wu S Z, Zhang L Q, Wang W C, Cao D P 2011 Phys. Chem. Chem. Phys. 13 518
[18] Wang X H, Li S B, Zhang L X, Liang H J 2011 Chin Phys B 20 083601
[19] Duan F L, Yan S D 2012 Chin. J. Comput. Phys. 29 759 (in Chinese) [段芳莉, 颜世铛 2012 计算物理 29 759]
[20] Meyer H, Muller-Plathe F 2001 J. Chem. Phys 115 7807
[21] Reith D, Meyer H, Muller-Plathe F 2001 Macromolecules 34 2335
[22] Meyer H, Muller-Plathe F 2002 Macromolecules 35 1241
[23] Meyer H 2006 J. Chem. Theory Comput 2 616
[24] Zhang D S, Meyer H 2007 J. Polym. Sci. Part B: Polym. Phys. 45 2161
[25] Plimpton S 1995 J. Comput. Phys. 7 1
-
[1] Jancar J, Douglas J F, Starr F W, Kumar S K, Cassagnau P, Lesser A J, Sternstein S S, Buehler M J 2010 Polymer 51 3321
[2] Gao X, Jin M N, Bu H S 2000 J. Polym. Sci. Part B: Polym. Phys 38 3285
[3] Mucha M, Marszalek J, Fidrych A 2000 Polymer 41 4137
[4] Kim S H, Ahn S H, Hirai T 2003 Polymer 44 5625
[5] Zhou X M, Chen X M, Wu X B, Shui J P, Zhu Z G 2011 Acta Phys. Sin. 60 036102 (in Chinese) [周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚 2011 60 036102]
[6] Strobl G 2000 Eur. Phys. J. E 3 165
[7] Starr F W, Schrøder T B, Glotzer S C 2002 Macromolecules 35 4481
[8] Rittigstein P, Torkelson J M 2006 J. Polym. Sci. Part B: Polym. Phys. 44 2935
[9] LeBaron P C, Wang Z, Pinnavaia T J 1999 Appl. Clay Sci. 15 11
[10] Andrews R, Weisenberger M C 2004 Curr. Opin. Solid State Mat. Sci. 8 31
[11] Sahoo N G, Rana S, Cho J W, Li L, Chan S H 2010 Prog. Polym. Sci. 35 837
[12] Wu X B, Shang S Y, Xu Q L, Shui J P, Zhu Z G 2007 Acta Phys. Sin. 56 4798 (in Chinese) [吴学邦, 尚淑英, 许巧玲, 水嘉鹏, 朱震钢 2007 56 4798]
[13] Smith J S, Bedrov D, Smith G D 2003 Compos. Sci. Technol. 63 1599
[14] Brown D 2007 Macromolecules 41 1499
[15] Wu X B, Xu Q L, Shang S Y, Shui J P 2008 Chin. Phys. Lett. 25 1338
[16] Liu J, Gao Y Y, Cao D P, Zhang L Q, Guo Z H 2011 Langmuir 27 7926
[17] Liu J, Wu S Z, Zhang L Q, Wang W C, Cao D P 2011 Phys. Chem. Chem. Phys. 13 518
[18] Wang X H, Li S B, Zhang L X, Liang H J 2011 Chin Phys B 20 083601
[19] Duan F L, Yan S D 2012 Chin. J. Comput. Phys. 29 759 (in Chinese) [段芳莉, 颜世铛 2012 计算物理 29 759]
[20] Meyer H, Muller-Plathe F 2001 J. Chem. Phys 115 7807
[21] Reith D, Meyer H, Muller-Plathe F 2001 Macromolecules 34 2335
[22] Meyer H, Muller-Plathe F 2002 Macromolecules 35 1241
[23] Meyer H 2006 J. Chem. Theory Comput 2 616
[24] Zhang D S, Meyer H 2007 J. Polym. Sci. Part B: Polym. Phys. 45 2161
[25] Plimpton S 1995 J. Comput. Phys. 7 1
计量
- 文章访问数: 6292
- PDF下载量: 853
- 被引次数: 0