搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

霍尔推进器壁面材料二次电子发射及鞘层特性

段萍 覃海娟 周新维 曹安宁 刘金远 卿少伟

引用本文:
Citation:

霍尔推进器壁面材料二次电子发射及鞘层特性

段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟

Characteristics of wall materials secondary electron emission and sheath in Hall thruster

Duan Ping, Qin Hai-Juan, Zhou Xin-Wei, Cao An-Ning, Liu Jin-Yuan, Qing Shao-Wei
PDF
导出引用
  • 霍尔推进器放电通道等离子体与壁面相互作用形成鞘层,不同壁面材料的二次电子发射对推进器鞘层特性具有重要影响. 本文针对推进器壁面鞘层区域建立二维物理模型,研究了氮化硼(BN)、碳化硅(SiC)和三氧化二铝(Al2O3)三种不同壁面材料的二次电子发射特性,在改进SiC材料二次电子发射模型的基础上,采用粒子模拟方法,讨论了壁面二次电子发射系数与电子温度和磁场强度的关系,研究了三种材料(BN,SiC和Al2O3)的鞘层特性. 结果表明:修正的二次电子发射模型拟合曲线与实验曲线几乎一致;在相同电子温度下,三种材料(BN,SiC和Al2O3)的二次电子发射系数和壁面电子数密度依次增大,而鞘层电场和鞘层电势降依次减小. BN材料具有合适的二次电子发生射系数,使得霍尔推进器能在低电流下稳态工作.
    Hall thruster plasma discharge channels interact with wall forming sheath, and different secondary electron emission coefficients of wall material can considerably affect sheath characteristics. In this paper, we establish a two-dimensional physical model in wall sheath area to study the secondary electron emission characteristics of three different wall materials which are boron nitride (BN), silicon carbide (SiC) and aluminium oxide (Al2O3), and SiC material secondary electron emission model is improved. On the basis of improved secondary electron emission model, the relationship between the wall secondary electron emission coefficient and both electron temperature and magnetic field intensity is discussed by the particle in cell simulation method, and the different sheath properties of three materials (BN, SiC and Al2O3), are also investigated. The results show that fitting curve is consistent with the experimental results; at the same electron temperature, the values of secondary electron emission coefficient and electron density of three materials (BN, SiC and Al2O3) increase but the values of sheath electric field and sheath potential drop decrease in their sequence. The BN material has the appropriate secondary electron radiation coefficient, which makes the thruster work steadily under low current condition.
    • 基金项目: 国家自然科学基金(批准号:11275034,11375039,11175052,11005025)和辽宁省科学技术计划重点项目(批准号:2011224007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275034, 11375039, 11175052, 11005025) and the Key Program of Science and Technology of Liaoning Province, China (Grant No. 2011224007).
    [1]

    Jankovsky R S, Jacobson D T, Sarmiento C J, Pinero L R, Sarmiento C J 2002 38th Joint Propulsion Conference and Exhibit Indianapolis Indiana, July 7-10, 2002 AIAA-2002-3675

    [2]

    Steven R O, John M S 2000 3rd International Spacecraft Propulsion Conference Cannes, France, October 10-13, 2000 NASA/TM-2001-210676

    [3]

    Mao G W, Fu X P, Chen M L 2008 Mech. Sci. Technol. Aerosp. Engineer. 27 853 (in Chinese) [毛根旺, 付西鹏 2008 机械科学与技术 27 853]

    [4]

    Brandhorst H W, O’Neill M J, Alan Jones P, Joseph Cassady R 2002 Acta Astronaut. 51 57

    [5]

    Kang X L, Yu S L, Qiao C X, Zhao Z, Hang G R, Qiu G, Chen H H, Zhang Y 2012 Proceeding of the 8th Chinese Electric Propulsion Conference Beijing China Novemberm 16-18, 2012 180 (in Chinese) [康小录, 余水淋, 乔彩霞, 赵震, 杭观荣, 邱刚, 陈海辉, 张岩 2012 第八届中国电推进技术学术研讨会北京, 中国, 11月16–18, 2012 p180]

    [6]

    Sydorenko D, Smolyakov A 2006 IEEE Trans. Plasma Sci. 34 815824

    [7]

    Sydorenko D, Smolyakov A, Kaganovich I 2008 Phys. Plasmas 15 053506

    [8]

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844 (in Chinese) [于达仁, 张凤奎, 李鸿, 刘辉 2009 58 1844]

    [9]

    Gascona N, Dudeck M 2003 Phys. Plasmas 16 053906

    [10]

    Sydorenko D 2006 Ph. D. Dissertation (Saskatoon: Saskatchewan University of Saskatchewan) pp16-17

    [11]

    Morozov A I, Savelyev V V 2001 Proceedings of the 27th International Electric Propulsion Conference Pasadena, USA, October 14-19, 2001 p95

    [12]

    Morozov A I, Savelyev V V 2004 Phys. Plasmas 30 330

    [13]

    Taccognaa F 2012 AIP Conf. Proc. 15 011390

    [14]

    Qing S W, E P, Duan P 2012 Acta Phys. Sin. 61 205202 (in Chinese) [卿绍伟, 鄂鹏, 段萍 2012 61 205202]

    [15]

    Shao F Q 2002 Plasma Particle Simulation (Beijing: Science Press) p12 (in Chinese) [邵福球 2002 等离子体粒子模拟 (北京: 科学出版社) 第12页]

    [16]

    Zhao X Y, Liu J Y, Duan P, Li S G 2012 Chin. J. Va-cuum Sci. Technol. 32 279 (in Chinese) [赵晓云, 刘金远, 段萍, 李世刚 2012 真空科学与技术学报 32 279]

    [17]

    Barral S, Makowski K, Peradzyński Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137

    [18]

    Dunaevsky A, Raitses Y, Fisch N J2003 Phys. Plasmas 10 2574

    [19]

    Zhang F K, Ding Y J, Qing S W Wu X D 2011 Chin. Phys. B 20 125201

    [20]

    Shu S 2006 M. S. Dissertation (Harbin: Harbin Institute of Technology of China) (in Chinese) [疏舒 2006 硕士论文 (哈尔滨: 哈尔滨工业大学)]

  • [1]

    Jankovsky R S, Jacobson D T, Sarmiento C J, Pinero L R, Sarmiento C J 2002 38th Joint Propulsion Conference and Exhibit Indianapolis Indiana, July 7-10, 2002 AIAA-2002-3675

    [2]

    Steven R O, John M S 2000 3rd International Spacecraft Propulsion Conference Cannes, France, October 10-13, 2000 NASA/TM-2001-210676

    [3]

    Mao G W, Fu X P, Chen M L 2008 Mech. Sci. Technol. Aerosp. Engineer. 27 853 (in Chinese) [毛根旺, 付西鹏 2008 机械科学与技术 27 853]

    [4]

    Brandhorst H W, O’Neill M J, Alan Jones P, Joseph Cassady R 2002 Acta Astronaut. 51 57

    [5]

    Kang X L, Yu S L, Qiao C X, Zhao Z, Hang G R, Qiu G, Chen H H, Zhang Y 2012 Proceeding of the 8th Chinese Electric Propulsion Conference Beijing China Novemberm 16-18, 2012 180 (in Chinese) [康小录, 余水淋, 乔彩霞, 赵震, 杭观荣, 邱刚, 陈海辉, 张岩 2012 第八届中国电推进技术学术研讨会北京, 中国, 11月16–18, 2012 p180]

    [6]

    Sydorenko D, Smolyakov A 2006 IEEE Trans. Plasma Sci. 34 815824

    [7]

    Sydorenko D, Smolyakov A, Kaganovich I 2008 Phys. Plasmas 15 053506

    [8]

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844 (in Chinese) [于达仁, 张凤奎, 李鸿, 刘辉 2009 58 1844]

    [9]

    Gascona N, Dudeck M 2003 Phys. Plasmas 16 053906

    [10]

    Sydorenko D 2006 Ph. D. Dissertation (Saskatoon: Saskatchewan University of Saskatchewan) pp16-17

    [11]

    Morozov A I, Savelyev V V 2001 Proceedings of the 27th International Electric Propulsion Conference Pasadena, USA, October 14-19, 2001 p95

    [12]

    Morozov A I, Savelyev V V 2004 Phys. Plasmas 30 330

    [13]

    Taccognaa F 2012 AIP Conf. Proc. 15 011390

    [14]

    Qing S W, E P, Duan P 2012 Acta Phys. Sin. 61 205202 (in Chinese) [卿绍伟, 鄂鹏, 段萍 2012 61 205202]

    [15]

    Shao F Q 2002 Plasma Particle Simulation (Beijing: Science Press) p12 (in Chinese) [邵福球 2002 等离子体粒子模拟 (北京: 科学出版社) 第12页]

    [16]

    Zhao X Y, Liu J Y, Duan P, Li S G 2012 Chin. J. Va-cuum Sci. Technol. 32 279 (in Chinese) [赵晓云, 刘金远, 段萍, 李世刚 2012 真空科学与技术学报 32 279]

    [17]

    Barral S, Makowski K, Peradzyński Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137

    [18]

    Dunaevsky A, Raitses Y, Fisch N J2003 Phys. Plasmas 10 2574

    [19]

    Zhang F K, Ding Y J, Qing S W Wu X D 2011 Chin. Phys. B 20 125201

    [20]

    Shu S 2006 M. S. Dissertation (Harbin: Harbin Institute of Technology of China) (in Chinese) [疏舒 2006 硕士论文 (哈尔滨: 哈尔滨工业大学)]

  • [1] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响.  , 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性.  , 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响.  , 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [5] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响.  , 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [6] 何鋆, 俞斌, 王琪, 白春江, 杨晶, 胡天存, 谢贵柏, 崔万照. 磁控溅射铂抑制镀银表面的二次电子发射.  , 2018, 67(8): 087901. doi: 10.7498/aps.67.20172740
    [7] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究.  , 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [8] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响.  , 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [9] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响.  , 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [10] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [11] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究.  , 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [12] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型.  , 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [13] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型.  , 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [14] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响.  , 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [15] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响.  , 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [16] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟.  , 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [17] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性.  , 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [18] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响.  , 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [19] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响.  , 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [20] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究.  , 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
计量
  • 文章访问数:  6993
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-28
  • 修回日期:  2013-11-27
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map