搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究

徐莹莹 阚玉和 武洁 陶委 苏忠民

引用本文:
Citation:

并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究

徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民

Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues

Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min
PDF
导出引用
  • 采用密度泛函理论PBE0方法在6-31G(d, p) 基组水平上对比研究并六苯纳米环[6]CA及BN取代纳米环[6]CA-BN的几何结构及电子性质. 同时探讨锂离子掺杂对不同体系的芳香性、前线分子轨道、电子吸收光谱及传输性质的影响. 通过电离势、亲合势及重组能的计算, 预测纳米环体系得失电子的能力及传输性能. 结果表明:[6]CA的能隙很小, BN取代后, 能隙明显增大; 锂离子掺杂到两种纳米环中, 在不明显改变前线分子轨道分布的前提下, 几乎同步降低了最高占据轨道、 最低未占据轨道能级, 锂离子掺杂使载流子传输性能得到很大改善; 电子吸收光谱拟合发现, BN取代使吸收光谱很大程度蓝移, 吸收强度明显减小; 而锂离子掺杂对光谱的强度及吸收范围没有明显影响.
    Density functional theory (DFT) is used in a series of hexacene nanoring ([6]CA), its boron nitride analogue ([6]CA-BN) and lithium ion doping derivatives to obtain an insight into electronic structure, aromaticity property, energy gap, ionization potential, electron affinity and reorganization energy. DFT calculations of these nanorings indicate that the energy gaps of the carbon nanorings are smaller than those of the boron nitride nanorings. The lithium ion doping will remarkably reduce the HOMO and LUMO energy. The aromaticities of the rings are investigated though nucleus-independent chemical shift (NICS) values. The NICS scan suggests that the aromaticities of carbon nanoring systems are more than those of boron nitride analogues, the aromaticities of boron nitride compounds are very weak due to orbital localization. We also calculate the reorganization energy to investigate the charge transport properties. The results show that the carbon nanoring and their analogues could serve as bipolar carrier transport materials in photoelectric functional materials, and the lithium ion doping significantly improves the charge transport properties. The [6]CA-BN nanorings serve as better electron-transport materials. Furthermore, the lithium ion doping significantly affects the charge transfer property of [6]CA-BN nanoring, making it used as bipolar carrier transport materials. The time dependant DFT investigations show that the boron nitride substitution leads to an important change in absorption spectrum with blue-shift. And lithium ion doping has no obvious influence on absorption spectrum.
    • 基金项目: 国家重点基础研究发展计划 (批准号:2009CB623605)、国家自然科学基金(批准号:21273030)、江苏省自然科学基金(批准号:BK2011408)、江苏省低维材料化学重点建设实验室开放课题(批准号:JSKC12109)和淮阴师范学院高级别科研项目培育基金 (批准号:11HSGJBZ11)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB623605), the National Natural Science Foundation of China (Grant No. 21273030), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011408), the Opening Project of Key Laboratory for Chemistry of Low-Dimensional Materials of Jiangsu Province, China (Grant No. JSKC12109), and the Cultivation Fund of the Key Scientific Innovation Project of Huaiyin Normal University, China (Grant No. 11HSGJBZ11).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R 2011 J. Mater. Chem. 21 15872

    [3]

    Omachi H, Segawa Y, Itami K 2012 Acc. Chem. Res. 45 1378

    [4]

    Kawase T, Kurata H 2006 Chem. Rev. 106 5250

    [5]

    Scott L T 2003 Angew. Chem. Int. Ed. 42 4133

    [6]

    Eisenberg D, Shenhar R, Rabinovitz M 2010 Chem. Soc. Rev. 39 2879

    [7]

    Marsden J A, Miller J J, Shirtcliff L D, Haley M M 2005 J. Am. Chem. Soc. 127 2464

    [8]

    Zhao T, Liu Z, Song Y, Xu W, Zhang D, Zhu D 2006 J. Org. Chem. 71 7422

    [9]

    Xu H L, Zhong R L, Yan L K, Su Z M 2012 J. Phys. Org. Chem. 25 176

    [10]

    Jasti R, Bertozzi C R 2010 Chem. Phys. Lett. 494 1

    [11]

    Bunz U H F, Menning S, Martin N 2012 Angew. Chem. Int. Ed. 51 7094

    [12]

    Dai H J 2002 Acc. Chem. Res. 35 1035

    [13]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [14]

    Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H 1996 Appl. Phys. Lett. 69 2045

    [15]

    Han W Q, Bando Y, Kurashima K, Sato T 1998 Appl. Phys. Lett. 73 3085

    [16]

    Golberg D, Bando Y, Han W, Kurashima K, Sato T 1999 Chem. Phys. Lett. 308 337

    [17]

    Golberg D, Bando Y, Kurashima K, Sato T 2000 Chem. Phys. Lett. 323 185

    [18]

    Ma R, Bando Y, Sato T 2001 Chem. Phys. Lett. 337 61

    [19]

    Loh K P, Yang S W, Soon J M, Zhang H, Wu P 2003 J. Phys. Chem. A 107 5555

    [20]

    Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520 (in Chinese) [贾建峰, 武海顺 2006 物理化学学报 22 1520]

    [21]

    Sun W G, Liu X Y, Wang C Y, Tang Y J, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [孙卫国, 刘秀英, 王朝阳, 唐永建, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 58 1131]

    [22]

    Jia J F, Wu H S, Jiao H J 2004 Acta Chim. Sin. 62 1385 (in Chinese) [贾建峰, 武海顺, 焦海军 2004 化学学报 62 1385]

    [23]

    Gleiter R, Esser B, Kornmayer S C 2009 Acc. Chem. Res. 42 1108

    [24]

    Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R 2008 J. Am. Chem. Soc. 130 17646

    [25]

    Steinberg B D, Scott L T 2009 Angew. Chem. Int. Ed. 48 5400

    [26]

    Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K 2009 Angew. Chem. Int. Ed. 48 6112

    [27]

    Omachi H, Matsuura S, Segawa Y, Itami K 2010 Angew. Chem. Int. Ed. 49 10202

    [28]

    Yamago S, Watanabe Y, Iwamoto T 2010 Angew. Chem. Int. Ed. 49 757

    [29]

    Sisto T J, Golder M R, Hirst E S, Jasti R 2011 J. Am. Chem. Soc. 133 15800

    [30]

    Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K 2012 Chem. Sci. 3 2340

    [31]

    Xia J, Jasti R 2012 Angew. Chem. Int. Ed. 51 2474

    [32]

    Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K 2011 Angew. Chem. Int. Ed. 50 3244

    [33]

    Jasti R, Sisto T 2012 Synlett. 23 483

    [34]

    Chen Z, Jiang D E, Lu X, Bettinger H F, Dai S, Schleyer P V, Houk K N 2007 Org. Lett. 9 5449

    [35]

    Choi H S, Kim K S 1999 Angew. Chem. Int. Ed. 38 2256

    [36]

    Chen Y K, Liu L V, Tian W Q, Wang Y A 2011 J. Phys. Chem. C 115 9306

    [37]

    Wang X, Liew K M 2012 J. Phys. Chem. C 116 1702

    [38]

    Wang C, Wang L G, Zhang H Y, Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese) [王畅, 王利光, 张鸿宇, Terence K S W 2010 59 536]

    [39]

    Yang C, Zhang B X, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [杨春, 张变霞, 冯玉芳, 余毅 2009 58 4066]

    [40]

    Baibarac M, Lira Cantú M, Oró Solé J, Casañ Pastor N, Gomez Romero P 2006 Small 2 1075

    [41]

    Liu Y Q 2010 Organic Nano and Molecular Devices (Beijing:Science Publishing House) p101 (in Chinese) [刘云圻2010 有机纳米与分子器件(北京:科学出版社) 第101页]

    [42]

    Schleyer P V, Maerker C, Dransfeld A, Jiao H J, Hommes N 1996 J. Am. Chem. Soc. 118 6317

    [43]

    Martin R L 2003 J. Chem. Phys. 118 4775

    [44]

    Tretiak S, Mukamel S 2002 Chem. Rev. 102 3171

    [45]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision A.02 Gaussian, Inc. Wallingford CT)

    [46]

    Zhao Y, Truhlar D G 2008 Acc. Chem. Res. 41 157

    [47]

    Scholes G D, Tretiak S, McDonald T J, Metzger W K, Engtrakul C, Rumbles G, Heben M J 2007 J. Phys. Chem. C 111 11139

    [48]

    Wong B M 2009 J. Phys. Chem. C 113 21921

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R 2011 J. Mater. Chem. 21 15872

    [3]

    Omachi H, Segawa Y, Itami K 2012 Acc. Chem. Res. 45 1378

    [4]

    Kawase T, Kurata H 2006 Chem. Rev. 106 5250

    [5]

    Scott L T 2003 Angew. Chem. Int. Ed. 42 4133

    [6]

    Eisenberg D, Shenhar R, Rabinovitz M 2010 Chem. Soc. Rev. 39 2879

    [7]

    Marsden J A, Miller J J, Shirtcliff L D, Haley M M 2005 J. Am. Chem. Soc. 127 2464

    [8]

    Zhao T, Liu Z, Song Y, Xu W, Zhang D, Zhu D 2006 J. Org. Chem. 71 7422

    [9]

    Xu H L, Zhong R L, Yan L K, Su Z M 2012 J. Phys. Org. Chem. 25 176

    [10]

    Jasti R, Bertozzi C R 2010 Chem. Phys. Lett. 494 1

    [11]

    Bunz U H F, Menning S, Martin N 2012 Angew. Chem. Int. Ed. 51 7094

    [12]

    Dai H J 2002 Acc. Chem. Res. 35 1035

    [13]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [14]

    Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H 1996 Appl. Phys. Lett. 69 2045

    [15]

    Han W Q, Bando Y, Kurashima K, Sato T 1998 Appl. Phys. Lett. 73 3085

    [16]

    Golberg D, Bando Y, Han W, Kurashima K, Sato T 1999 Chem. Phys. Lett. 308 337

    [17]

    Golberg D, Bando Y, Kurashima K, Sato T 2000 Chem. Phys. Lett. 323 185

    [18]

    Ma R, Bando Y, Sato T 2001 Chem. Phys. Lett. 337 61

    [19]

    Loh K P, Yang S W, Soon J M, Zhang H, Wu P 2003 J. Phys. Chem. A 107 5555

    [20]

    Jia J F, Wu H S 2006 Acta Phys. Chim. Sin. 22 1520 (in Chinese) [贾建峰, 武海顺 2006 物理化学学报 22 1520]

    [21]

    Sun W G, Liu X Y, Wang C Y, Tang Y J, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126 (in Chinese) [孙卫国, 刘秀英, 王朝阳, 唐永建, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 58 1131]

    [22]

    Jia J F, Wu H S, Jiao H J 2004 Acta Chim. Sin. 62 1385 (in Chinese) [贾建峰, 武海顺, 焦海军 2004 化学学报 62 1385]

    [23]

    Gleiter R, Esser B, Kornmayer S C 2009 Acc. Chem. Res. 42 1108

    [24]

    Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R 2008 J. Am. Chem. Soc. 130 17646

    [25]

    Steinberg B D, Scott L T 2009 Angew. Chem. Int. Ed. 48 5400

    [26]

    Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K 2009 Angew. Chem. Int. Ed. 48 6112

    [27]

    Omachi H, Matsuura S, Segawa Y, Itami K 2010 Angew. Chem. Int. Ed. 49 10202

    [28]

    Yamago S, Watanabe Y, Iwamoto T 2010 Angew. Chem. Int. Ed. 49 757

    [29]

    Sisto T J, Golder M R, Hirst E S, Jasti R 2011 J. Am. Chem. Soc. 133 15800

    [30]

    Ishii Y, Nakanishi Y, Omachi H, Matsuura S, Matsui K, Shinohara H, Segawa Y, Itami K 2012 Chem. Sci. 3 2340

    [31]

    Xia J, Jasti R 2012 Angew. Chem. Int. Ed. 51 2474

    [32]

    Segawa Y, Miyamoto S, Omachi H, Matsuura S, Šenel P, Sasamori T, Tokitoh N, Itami K 2011 Angew. Chem. Int. Ed. 50 3244

    [33]

    Jasti R, Sisto T 2012 Synlett. 23 483

    [34]

    Chen Z, Jiang D E, Lu X, Bettinger H F, Dai S, Schleyer P V, Houk K N 2007 Org. Lett. 9 5449

    [35]

    Choi H S, Kim K S 1999 Angew. Chem. Int. Ed. 38 2256

    [36]

    Chen Y K, Liu L V, Tian W Q, Wang Y A 2011 J. Phys. Chem. C 115 9306

    [37]

    Wang X, Liew K M 2012 J. Phys. Chem. C 116 1702

    [38]

    Wang C, Wang L G, Zhang H Y, Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese) [王畅, 王利光, 张鸿宇, Terence K S W 2010 59 536]

    [39]

    Yang C, Zhang B X, Feng Y F, Yu Y 2009 Acta Phys. Sin. 58 4066 (in Chinese) [杨春, 张变霞, 冯玉芳, 余毅 2009 58 4066]

    [40]

    Baibarac M, Lira Cantú M, Oró Solé J, Casañ Pastor N, Gomez Romero P 2006 Small 2 1075

    [41]

    Liu Y Q 2010 Organic Nano and Molecular Devices (Beijing:Science Publishing House) p101 (in Chinese) [刘云圻2010 有机纳米与分子器件(北京:科学出版社) 第101页]

    [42]

    Schleyer P V, Maerker C, Dransfeld A, Jiao H J, Hommes N 1996 J. Am. Chem. Soc. 118 6317

    [43]

    Martin R L 2003 J. Chem. Phys. 118 4775

    [44]

    Tretiak S, Mukamel S 2002 Chem. Rev. 102 3171

    [45]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision A.02 Gaussian, Inc. Wallingford CT)

    [46]

    Zhao Y, Truhlar D G 2008 Acc. Chem. Res. 41 157

    [47]

    Scholes G D, Tretiak S, McDonald T J, Metzger W K, Engtrakul C, Rumbles G, Heben M J 2007 J. Phys. Chem. C 111 11139

    [48]

    Wong B M 2009 J. Phys. Chem. C 113 21921

  • [1] 陈子俊, 李慧芳, 谢圳明, 张勇航, 郑浩, 姜凯乐, 张博, 张家铭, 王怀谦. 稀土掺杂硼团簇$ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8) 的几何及电子结构.  , 2024, 73(19): 193601. doi: 10.7498/aps.73.20240962
    [2] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] 宋明旭, 王怀鹏, 孙翊淋, 蔡理, 杨晓阔, 谢丹. AuCl3掺杂对碳纳米管晶体管的电学性能调控及特性分析.  , 2021, 70(23): 238801. doi: 10.7498/aps.70.20211026
    [4] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] 唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰. 碳硼富勒烯衍生物C18B2M(M=Li, Ti, Fe)的储氢性能计算研究.  , 2015, 64(9): 096103. doi: 10.7498/aps.64.096103
    [6] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究.  , 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [7] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [8] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算.  , 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [9] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算.  , 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [10] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [11] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究.  , 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [13] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [14] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究.  , 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] 陈国栋, 王六定, 安博, 杨敏, 曹得财, 刘光清. 氮掺杂及水分子吸附碳纳米管电子场发射第一性原理研究.  , 2009, 58(2): 1190-1194. doi: 10.7498/aps.58.1190
    [16] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [17] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [18] 陈国栋, 王六定, 张教强, 曹得财, 安 博, 丁富才, 梁锦奎. 掺硼水吸附碳纳米管电子场发射性能的第一性原理研究.  , 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [19] 徐 波, 潘必才. 碳纳米管中α-Ga和β-Ga纳米线相对稳定性的理论研究.  , 2008, 57(10): 6526-6530. doi: 10.7498/aps.57.6526
    [20] 王昆鹏, 师春生, 赵乃勤, 杜希文. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究.  , 2008, 57(12): 7833-7840. doi: 10.7498/aps.57.7833
计量
  • 文章访问数:  6902
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-23
  • 修回日期:  2012-12-26
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map