搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声悬浮条件下黏性液滴的扇谐振荡规律研究

邵学鹏 解文军

引用本文:
Citation:

声悬浮条件下黏性液滴的扇谐振荡规律研究

邵学鹏, 解文军

Sectorial oscillation of acoustically levitated viscous drops

Shao Xue-Peng, Xie Wen-Jun
PDF
导出引用
  • 采用单轴式声悬浮方法研究了黏度 =0.9475.65 mPas的甘油-水溶液液滴的扇谐振荡规律. 发现一定阶数的振荡模式存在一定的临界黏度c, 只有当 c时, 该阶扇谐振荡才能被激发. 实验测定了声场调制幅度 = 0.23 时, l =29 阶扇谐振荡的临界黏度, 发现ln c与l近似呈线性递减关系. 采用参数共振理论分析了黏性液滴的扇谐振荡过程, 发现激发扇谐振荡的液滴赤道半径扰动阈值hc正比于液滴黏度, 并随l增大而增大, 因此扇谐振荡难以在高黏度和高阶模式下发生. 实验还发现, 各阶扇谐振荡的振幅和共振频率宽度随液滴黏度增大而减小, 黏度对液滴本征频率无明显影响.
    The sectorial oscillation of acoustically levitated viscous drops is investigated by applying a series of aqueous glycerol solutions (viscosity = 0.9475.65 mPas). It is found that there exists a critical viscosity c for a definite mode of sectorial oscillation, and that mode can be excited only when c. The critical viscosities for the l = 29th mode sectorial oscillation are experimentally determined with a modulation amplitude to the acoustic field reaching = 0.23. It is found that ln c decreases approximately linearly with l. Analysis based on the parametric resonance theory indicates that in order to excite the sectorial oscillation, the equatorial radius of the drop must be perturbed overs a threshold hc, which is proportional to the viscosity and increases with l. Therefore, the sectorial oscillations can hardly be excited to those drops with high viscosity and large oscillation modes. Both the amplitude and resonant modulating frequency width decrease with the enlargement of viscosity. No obvious effect of viscosity is found on the eigenfrequency of sectorial oscillation.
    • 基金项目: 国家自然科学基金(批准号: 51071126) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071126).
    [1]

    Amo A, Sanvitto D, Laussy F P, Ballarini D, Valle E D, Martin M D, Lemaitre A, Bloch J, Krizhanovskii D N, Skolnick M S, Tejedor C, Via L 2009 Nature 457 291

    [2]
    [3]

    Krner C 2008 Mater. Sci. Eng. A 495 227

    [4]

    Fernando H J S 2010 Annu. Rev. Fluid Mech. 42 365

    [5]
    [6]
    [7]

    Garnero E J, McNamara A K 2008 Science 320 626

    [8]
    [9]

    Huang H Y, Wang Y Q 2010 Opt. Eng. 49 114201

    [10]
    [11]

    Randrup J 2009 Phys. Rev. C 79 054911

    [12]
    [13]

    Weber J K R, Rey C A, Neuefeind J, Benmore C J 2009 Rev. Sci. Instrum. 80 083904

    [14]

    Brandt E H 2001 Nature 413 474

    [15]
    [16]

    Yamamoto Y, Abe Y, Fujiwara A, Hasegawa K, Aoki K 2008 Microgravity Sci. Technol. 20 277

    [17]
    [18]

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302 (in Chinese) [杜人君, 解文军 2011 60 114302]

    [19]
    [20]
    [21]

    Trinh E, Wang T G 1982 J. Fluid Mech 122 315

    [22]

    Apfel R E, Tian Y, Jankovsky J, Shi T, Chen X, Holt R G, Trinh E, Croonquist A, Thornton K C, Sacco A, Coleman C, Leslie F W, Matthiesen D H 1997 Phys. Rev. Lett. 78 1912

    [23]
    [24]
    [25]

    Brunet P, Snoeijer J H 2011 Eur. Phys. J. Special Topics 192 207

    [26]
    [27]

    Natarajan R, Brown R A 1986 Phys. Fluids 29 2788

    [28]
    [29]

    Ludu A, Draayer J P 1998 Phys. Rev. Lett. 80 2125

    [30]

    Nugent S, Posch H A 2000 Phys. Rev. E 62 4968

    [31]
    [32]
    [33]

    Watanabe T 2009 Phys. Lett. A 373 867

    [34]

    Shen C L, Xie W J, Wei B 2010 Phys. Rev. E 81 046305

    [35]
    [36]

    Yan Z L, Xie W J, Shen C L, Wei B B 2011 Acta Phys. Sin. 60 064302 (in Chinese) [鄢振麟, 解文军, 沈昌乐, 魏炳波 2011 60 064302]

    [37]
    [38]
    [39]

    Shen C L, Xie W J, Wei B 2010 Phys. Lett. A 374 2301

    [40]
    [41]

    Shen C L, Xie W J, Yan Z L, Wei B 2010 Phys. Lett. A 374 4045

    [42]

    Gu Q C, Lou S C, Dai Q P, Huang B R, Li Q J 1979 Chemical Databases (Vol. 1) (Nanijing: Jiangsu Science and Technology Press) p148 (in Chinese) [顾庆超, 楼书聪, 戴庆平, 黄炳荣, 李乔钧 1979 化学用表 (第1卷) (南京: 江苏科学技术出版社) 第148页]

    [43]
    [44]
    [45]

    Mehrotra A K, Monnery W D, Svrcek W Y 1996 Fluid Phase Equilib. 117 344

    [46]

    Zhang J T 2008 Glycerol (Beijing: Chemical Industry Press) p15 (in Chinese) [张金廷 2008 甘油 (北京: 化学工业出版社) 第15页]

    [47]
    [48]

    Tong J S 2008 Fluid Thermal Physical Properties (Beijing: China Petrochemical Press) p224 (in Chinese) [童景山 2008 流体热物性学 (北京: 中国石化出版社) 第224页]

    [49]
    [50]
    [51]

    Landau L D, Lifshitz E M 1999 Mechanics (3rd Ed.) (Beijing: World Publishing Corporation) p80

    [52]

    Landau L D, Lifshitz E M 1999 Fluid Mechanics (2nd Ed.) (Beijing: World Publishing Corporation) p51

    [53]
  • [1]

    Amo A, Sanvitto D, Laussy F P, Ballarini D, Valle E D, Martin M D, Lemaitre A, Bloch J, Krizhanovskii D N, Skolnick M S, Tejedor C, Via L 2009 Nature 457 291

    [2]
    [3]

    Krner C 2008 Mater. Sci. Eng. A 495 227

    [4]

    Fernando H J S 2010 Annu. Rev. Fluid Mech. 42 365

    [5]
    [6]
    [7]

    Garnero E J, McNamara A K 2008 Science 320 626

    [8]
    [9]

    Huang H Y, Wang Y Q 2010 Opt. Eng. 49 114201

    [10]
    [11]

    Randrup J 2009 Phys. Rev. C 79 054911

    [12]
    [13]

    Weber J K R, Rey C A, Neuefeind J, Benmore C J 2009 Rev. Sci. Instrum. 80 083904

    [14]

    Brandt E H 2001 Nature 413 474

    [15]
    [16]

    Yamamoto Y, Abe Y, Fujiwara A, Hasegawa K, Aoki K 2008 Microgravity Sci. Technol. 20 277

    [17]
    [18]

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302 (in Chinese) [杜人君, 解文军 2011 60 114302]

    [19]
    [20]
    [21]

    Trinh E, Wang T G 1982 J. Fluid Mech 122 315

    [22]

    Apfel R E, Tian Y, Jankovsky J, Shi T, Chen X, Holt R G, Trinh E, Croonquist A, Thornton K C, Sacco A, Coleman C, Leslie F W, Matthiesen D H 1997 Phys. Rev. Lett. 78 1912

    [23]
    [24]
    [25]

    Brunet P, Snoeijer J H 2011 Eur. Phys. J. Special Topics 192 207

    [26]
    [27]

    Natarajan R, Brown R A 1986 Phys. Fluids 29 2788

    [28]
    [29]

    Ludu A, Draayer J P 1998 Phys. Rev. Lett. 80 2125

    [30]

    Nugent S, Posch H A 2000 Phys. Rev. E 62 4968

    [31]
    [32]
    [33]

    Watanabe T 2009 Phys. Lett. A 373 867

    [34]

    Shen C L, Xie W J, Wei B 2010 Phys. Rev. E 81 046305

    [35]
    [36]

    Yan Z L, Xie W J, Shen C L, Wei B B 2011 Acta Phys. Sin. 60 064302 (in Chinese) [鄢振麟, 解文军, 沈昌乐, 魏炳波 2011 60 064302]

    [37]
    [38]
    [39]

    Shen C L, Xie W J, Wei B 2010 Phys. Lett. A 374 2301

    [40]
    [41]

    Shen C L, Xie W J, Yan Z L, Wei B 2010 Phys. Lett. A 374 4045

    [42]

    Gu Q C, Lou S C, Dai Q P, Huang B R, Li Q J 1979 Chemical Databases (Vol. 1) (Nanijing: Jiangsu Science and Technology Press) p148 (in Chinese) [顾庆超, 楼书聪, 戴庆平, 黄炳荣, 李乔钧 1979 化学用表 (第1卷) (南京: 江苏科学技术出版社) 第148页]

    [43]
    [44]
    [45]

    Mehrotra A K, Monnery W D, Svrcek W Y 1996 Fluid Phase Equilib. 117 344

    [46]

    Zhang J T 2008 Glycerol (Beijing: Chemical Industry Press) p15 (in Chinese) [张金廷 2008 甘油 (北京: 化学工业出版社) 第15页]

    [47]
    [48]

    Tong J S 2008 Fluid Thermal Physical Properties (Beijing: China Petrochemical Press) p224 (in Chinese) [童景山 2008 流体热物性学 (北京: 中国石化出版社) 第224页]

    [49]
    [50]
    [51]

    Landau L D, Lifshitz E M 1999 Mechanics (3rd Ed.) (Beijing: World Publishing Corporation) p80

    [52]

    Landau L D, Lifshitz E M 1999 Fluid Mechanics (2nd Ed.) (Beijing: World Publishing Corporation) p51

    [53]
  • [1] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型.  , 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [2] 杨志刚, 刘颖超, 张仕青, 罗瑞鉴, 赵需谦, 连加荣, 屈军乐. 活细胞应激反应过程中线粒体和核仁微环境动力学的荧光寿命成像研究.  , 2024, 73(7): 078702. doi: 10.7498/aps.73.20231990
    [3] 陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷. 向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立.  , 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [4] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [5] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟.  , 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [6] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进.  , 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [7] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索.  , 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [8] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [9] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析.  , 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [10] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究.  , 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [11] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索.  , 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [12] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固.  , 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [13] 程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清. 功率因数校正Boost变换器中快时标不稳定的形成与参数动态共振.  , 2011, 60(2): 020506. doi: 10.7498/aps.60.020506
    [14] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [15] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系.  , 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [16] 程为彬, 郭颖娜, 康思民, 汪跃龙, 霍爱清, 汤楠. Boost变换器中参数斜坡共振控制能力研究.  , 2009, 58(7): 4439-4448. doi: 10.7498/aps.58.4439
    [17] 张 雯, 刘彩池, 王海云, 徐岳生, 石义情. 半导体硅熔体的有效(磁)黏度.  , 2008, 57(6): 3875-3879. doi: 10.7498/aps.57.3875
    [18] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型.  , 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [19] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究.  , 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [20] 解文军, 曹崇德, 魏炳波. 声悬浮的实验研究和数值模拟分析.  , 1999, 48(2): 250-256. doi: 10.7498/aps.48.250
计量
  • 文章访问数:  7182
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-02
  • 修回日期:  2011-11-22
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map