-
在相场再结晶模型中提出了形式为 f(ik,jk) = Es (ide )2 (1-(jre)2)的冷变形储能项,并应用该模型模拟了AZ31镁合金的再结晶过程,模拟结果和实验观测结果符合很好.研究表明, 引入储能释放模型可以实现再结晶形核物理过程的模拟; 模拟结果可以把合金在冷变形后退火的过程按照机理分为再结晶和热晶粒长大两个阶段,模拟得出的理论再结晶时间是实验再结晶时间的2/3. 考察了冷变形应变大小对形变金属的亚晶粒尺寸和储能的影响机理和试验结果,并将考察结果代入到改进后的再结晶模拟模型, 成功地再现了一个经典实验结果:随预先应变量的增加, 存在临界应变量对应的一个再结晶晶粒尺寸峰值.同时还给出了这一经典实验结果的理论解释.A format of f(ik,jk ) = Es (ide )2(1-(jre )2) to express cold deformed stored energy is suggested in a phase-field model for simulating recrystallization in alloys. Using AZ31 magnesium alloy as an example, the recrystallization process is simulated by the new model, and the simulation results are in good agreement with experimental measurements. The nucleation process of recrystallization is realized for the first time by the model based on the physical background. The simulation results show that the grain growth of a cold deformed alloy in the annealing process indicates automatically two stages: recrystallization driven by the restored energy and thermal growth driven by boundary energy. A theoretical time spent in finishing recrystallization, obtained by simulation, is found to be 2/3 of that obtained by industrial practice. The mechanism and the experimental results about the influence of cold deformation on subgrain size and stored energy are examined, and the experimental results are introduced into the simulation. The common experimental phenomenon shows that there is a peak at the critical strain on the curve of recrystallized grain size versus cold strain. A theoretical explaination to the mechanism of the peak occurrence is also discussed.
-
Keywords:
- phase field method /
- nucleation /
- stored energy /
- recrystallization
[1] Liss K D, Garbe U, Li H, Schambron T, Almer J D, Yan K 2009 Adv. Eng. Mater. 11 637
[2] Radhakrishnan B, Sarma B, Zacharia T 1998 Acta Mater. 46 4415
[3] Kugler G, Turk R 2006 Comput. Mater. Sci. 37 284
[4] Raabe D, Becker R C 2000 Simul. Mater. Sci. Eng. 8 445
[5] Wang M T, Zong B Y, Wang G 2008 J. Mater. Sci. Technol. 24 829
[6] Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 58 S161]
[7] Zhang X G, Zong Y P, Wang M T, Wu Y 2011 Acta Phys. Sin. 60 068201 (in Chinese) [张宪刚, 宗亚平, 王明涛, 吴艳 2011 60 068201]
[8] Gao Y J, Luo Z R, Hu X Y, Huang C G 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英, 黄创高 2010 金属学报 46 1161]
[9] Wang G, Xu D S, Yang R 2009 Acta Phys. Sin. 58 S343 (in Chinese) [王刚, 徐东升, 杨锐 2009 58 S343]
[10] Takaki T, Tomita I Y 2010 Int. J. Mech. Sci. 52 320
[11] Cahn J W 1961 Acta Metall. 9 795
[12] Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) pp267---466
[13] Moreau G, Cornet J A, Calais D 1971 J. Nucl. Mater. 38 197
[14] Watari H, Haga T, Koga N, Davey K 2007 J. Mater. Process. Technol. 192 300
[15] Miyashita Y, Borrisutthekul R, Chen J, Mutoh Y 2007 Key Eng. Mater. 353 1956
[16] Verdier M, Groma I, Flandin L, Lendvai J, Brechet Y, Guyot P 1997 Scripta Mater. 37 449
[17] Liu R C, Wang L Y, Gu L G, Huang G S 2004 Light Alloy Fabr. Technol. 32 22 (in Chinese) [刘饶川, 汪凌云, 辜蕾钢,黄光胜 2004 轻合金加工技术 32 22]
[18] Langford G, Cohen M 1969 ASM Trans. Quart. 62 623
[19] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul J D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219
[20] Hansen N, Ralph B 1982 Acta Metall. 30 411
[21] Belyakov A, Sakai T, Miura H, Tsuzakit K 2001 Philos. Mag. A 81 2629
[22] Barnett M R, Keshavarz Z, Beer A G, Atwell D 2004 Acta Mater. 52 5093
-
[1] Liss K D, Garbe U, Li H, Schambron T, Almer J D, Yan K 2009 Adv. Eng. Mater. 11 637
[2] Radhakrishnan B, Sarma B, Zacharia T 1998 Acta Mater. 46 4415
[3] Kugler G, Turk R 2006 Comput. Mater. Sci. 37 284
[4] Raabe D, Becker R C 2000 Simul. Mater. Sci. Eng. 8 445
[5] Wang M T, Zong B Y, Wang G 2008 J. Mater. Sci. Technol. 24 829
[6] Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 58 S161]
[7] Zhang X G, Zong Y P, Wang M T, Wu Y 2011 Acta Phys. Sin. 60 068201 (in Chinese) [张宪刚, 宗亚平, 王明涛, 吴艳 2011 60 068201]
[8] Gao Y J, Luo Z R, Hu X Y, Huang C G 2010 Acta Metall. Sin. 46 1161 (in Chinese) [高英俊, 罗志荣, 胡项英, 黄创高 2010 金属学报 46 1161]
[9] Wang G, Xu D S, Yang R 2009 Acta Phys. Sin. 58 S343 (in Chinese) [王刚, 徐东升, 杨锐 2009 58 S343]
[10] Takaki T, Tomita I Y 2010 Int. J. Mech. Sci. 52 320
[11] Cahn J W 1961 Acta Metall. 9 795
[12] Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) pp267---466
[13] Moreau G, Cornet J A, Calais D 1971 J. Nucl. Mater. 38 197
[14] Watari H, Haga T, Koga N, Davey K 2007 J. Mater. Process. Technol. 192 300
[15] Miyashita Y, Borrisutthekul R, Chen J, Mutoh Y 2007 Key Eng. Mater. 353 1956
[16] Verdier M, Groma I, Flandin L, Lendvai J, Brechet Y, Guyot P 1997 Scripta Mater. 37 449
[17] Liu R C, Wang L Y, Gu L G, Huang G S 2004 Light Alloy Fabr. Technol. 32 22 (in Chinese) [刘饶川, 汪凌云, 辜蕾钢,黄光胜 2004 轻合金加工技术 32 22]
[18] Langford G, Cohen M 1969 ASM Trans. Quart. 62 623
[19] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul J D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219
[20] Hansen N, Ralph B 1982 Acta Metall. 30 411
[21] Belyakov A, Sakai T, Miura H, Tsuzakit K 2001 Philos. Mag. A 81 2629
[22] Barnett M R, Keshavarz Z, Beer A G, Atwell D 2004 Acta Mater. 52 5093
计量
- 文章访问数: 7632
- PDF下载量: 1326
- 被引次数: 0