-
理论和实验研究表明,纳米厚度周期调制的贫铀(DU)/Au多层膜材料具有高效的激光X射线转换效率. 采用交替磁控溅射制备纳米厚度的DU/Au平面多层周期结构,通过白光干涉仪、扫描电子显微镜、X射线光电子能谱对DU/Au多层膜的几何参数、表面形貌、成分以及界面形貌进行表征.实验结果表明: 8 nm为Au连续成膜的厚度阈值,结合理论计算最优化原子配比,选取DU层厚度为30 nm、Au层厚度为8 nm的调制周期结构;实测周期厚度为37 nm;扫描电子显微镜照片显示DU/Au分层明显; X射线光电子能谱深度刻蚀分析表明DU/Au界面处存在扩散, DU, Au, O三者原子比为73:26:1; 由于团簇效应, Au原子4f电子结合能向高能端移动,没有观察到DU相应的电子结合能移动现象.Modeling and experimental results show that the depleted uranium (DU) and Aucocktail nanometer multilayer will improve the X-ray conversion efficiency by reducing energy loss to penetration of the X-ray into the hohlraum wall. DU/Au multilayer plane film is deposited by magnetron sputtering through alternately rotating substrate in front of separate DU and Au sources. The geometry parameter, surface topography, atomic concentration and interface structure of DU/Au multilayer are characterized by white light interferometer, scanning electronic microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Au film becomes continuous when its thickness reaches 8 nm. Combining with theoretical modeling results, 30 nm DU and 8 nm Au multilayer is chosen. The periodic thickness of DU/Au is measured to be about 37 nm. Well-defined Du/Au interface is observed by SEM. Diffusion at DU/Au interface is observed by XPS. The atomic concentration ratio of DU, Au, O is 73:26:1. The binding energy of Au 4f of 8 nm thickness Au film shifts toward high-energy tail about by 0.6 eV. Similar phenomena are unfound in 30 nm thickness DU film.
-
Keywords:
- depleted uranium/Au multilayer /
- laser X-ray conversion efficiency /
- atomic concentration /
- cluster effect
[1] Kilkenny J 1995 Laser Plasma Interactions (5): Inertial Confinement Fusion (Bristol: Institute of Physics Publishing)
[2] Rosen M D 1999 Phys. Plasmas 6 1690
[3] Wilkens H L, Nikroo A, Wall D R, Wall J R 2007 Phys. Plasmas 14 56310
[4] Callahan D A, Amendt P A, Dewald E L, Haan S W, Hinkel D E, Lzurni N, Jones O S, Landen O L, Lindl J D, Pollaine S M, Suter L J 2006 Phys. Plasmas 13 056307
[5] Nishumura H, Endo T, Shiraga H, Kato Y, Nakai S 1993 Appl. Phys. Lett. 62 1344
[6] Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545
[7] Colobant D, Klapisch M, Bar-Shalom A 1998 Phys. Rev. E 57 3411
[8] Suter L, Rothenberg J, Munro D, Van Wonterghen B, Haan S 2000 Phys. Plasmas 7 2092
[9] Schein J, Jones O, Rosen M, Dewald E, Glenzer S, Gunther J, Hammel B Landen O, Suter L, Wallace R 2007 Phys. Rev. Lett. 98 175003
[10] Wilkens H L, Gunther J, Mauldin M P, Nikrco A, Wall J R, Harding D R, Lund L D 2006 Fusion Sci. Technol. 49 846
[11] Gouder T, Colmenares C A, Naegele J R 1995 Surf. Sci. 342 299
[12] Gouder T 1997 Surf. Sci. 382 26
[13] Bautista L B, Hänke T, Getzlaff M, Wiesendanger R, Opahle I, Koepernik K, Richter M 2004 Phys. Rev. B 70 113401
[14] Wilkens H E, Gunther J, Mauldin M P, Nikroo A, Wall J, Wall D, Wallace R J 2005 Inertial Confinement Fusion Annual Report (San Diego: General Atomics) pp72---74
[15] An T, Wang L L, Wen M, Zheng W T 2011 Acta Phys. Sin. 60 016801 (in Chinese) [安涛, 王丽丽, 文懋, 郑伟涛 2011 60 016801]
[16] Xia A L, Han B S 2008 Acta Phys. Sin. 57 545 (in Chinese) [夏爱林, 韩宝善 2008 57 545]
[17] Yue J L, Kong M, Zhao W J, Li G Y 2007 Acta Phys. Sin. 56 1568 (in Chinese) [岳建岭, 孔明, 赵文济, 李戈扬 2007 56 1568]
[18] Yi T M, Xing P F, Tang Y J, Zhang L, Zheng F C, Xie J, Li C Y, Yang M S 2010 At. Energy Sci. Techn. 44 869 (in Chinese) [易泰民, 邢丕峰, 唐永建, 张林, 郑凤成, 谢军, 李朝阳, 杨蒙生 2010 原子能科学技术 44 869]
[19] Lai X C, Fu X G, Li G, Zhong Y Q 2005 At. Energy Sci. Techn. 39 139 (in Chinese) [赖新春, 伏晓国, 李赣, 钟永强 2005 原子能科学技术 39 139]
-
[1] Kilkenny J 1995 Laser Plasma Interactions (5): Inertial Confinement Fusion (Bristol: Institute of Physics Publishing)
[2] Rosen M D 1999 Phys. Plasmas 6 1690
[3] Wilkens H L, Nikroo A, Wall D R, Wall J R 2007 Phys. Plasmas 14 56310
[4] Callahan D A, Amendt P A, Dewald E L, Haan S W, Hinkel D E, Lzurni N, Jones O S, Landen O L, Lindl J D, Pollaine S M, Suter L J 2006 Phys. Plasmas 13 056307
[5] Nishumura H, Endo T, Shiraga H, Kato Y, Nakai S 1993 Appl. Phys. Lett. 62 1344
[6] Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545
[7] Colobant D, Klapisch M, Bar-Shalom A 1998 Phys. Rev. E 57 3411
[8] Suter L, Rothenberg J, Munro D, Van Wonterghen B, Haan S 2000 Phys. Plasmas 7 2092
[9] Schein J, Jones O, Rosen M, Dewald E, Glenzer S, Gunther J, Hammel B Landen O, Suter L, Wallace R 2007 Phys. Rev. Lett. 98 175003
[10] Wilkens H L, Gunther J, Mauldin M P, Nikrco A, Wall J R, Harding D R, Lund L D 2006 Fusion Sci. Technol. 49 846
[11] Gouder T, Colmenares C A, Naegele J R 1995 Surf. Sci. 342 299
[12] Gouder T 1997 Surf. Sci. 382 26
[13] Bautista L B, Hänke T, Getzlaff M, Wiesendanger R, Opahle I, Koepernik K, Richter M 2004 Phys. Rev. B 70 113401
[14] Wilkens H E, Gunther J, Mauldin M P, Nikroo A, Wall J, Wall D, Wallace R J 2005 Inertial Confinement Fusion Annual Report (San Diego: General Atomics) pp72---74
[15] An T, Wang L L, Wen M, Zheng W T 2011 Acta Phys. Sin. 60 016801 (in Chinese) [安涛, 王丽丽, 文懋, 郑伟涛 2011 60 016801]
[16] Xia A L, Han B S 2008 Acta Phys. Sin. 57 545 (in Chinese) [夏爱林, 韩宝善 2008 57 545]
[17] Yue J L, Kong M, Zhao W J, Li G Y 2007 Acta Phys. Sin. 56 1568 (in Chinese) [岳建岭, 孔明, 赵文济, 李戈扬 2007 56 1568]
[18] Yi T M, Xing P F, Tang Y J, Zhang L, Zheng F C, Xie J, Li C Y, Yang M S 2010 At. Energy Sci. Techn. 44 869 (in Chinese) [易泰民, 邢丕峰, 唐永建, 张林, 郑凤成, 谢军, 李朝阳, 杨蒙生 2010 原子能科学技术 44 869]
[19] Lai X C, Fu X G, Li G, Zhong Y Q 2005 At. Energy Sci. Techn. 39 139 (in Chinese) [赖新春, 伏晓国, 李赣, 钟永强 2005 原子能科学技术 39 139]
计量
- 文章访问数: 7045
- PDF下载量: 1230
- 被引次数: 0