-
本文首先利用悬浮型微波共振探针测量了Ar等离子体的电子密度,并与朗缪尔双探针的测量结果进行了比较,表明了微波共振探针在低密度等离子体测量的可行性.对40.68 MHz单射频容性耦合Ar/SF6和SF6/O2等离子体的测量结果表明:电负性气体SF6掺入Ar等离子体显著降低了等离子体电子密度,但随着增加SF6的流量,电子密度表现为缓慢下降;而O2掺入SF6等离子体中,电子密度则随着O2流量的增加表现为持续的下降.另外,40.68 MHz/13.56 MHz双频激发的SF6/O2容性耦合离子体的电子密度并不随低频功率的变化而变化.本文对上述的实验现象进行了初步的解释.In electronegative or reactive plasmas, the problems such as negative ions floating near the sheath edge or deposition contamination cause more challenges for the diagnosis of conventional Langmiur probe. The electron density measured by microwave resonance probe is only a function of dielectric constant of plasma, there should be less or no influence of electronegative or reactive plasma. In this paper, a floating microwave resonator probe is proposed to measure electron density of capacitively coupled Ar plasma. A comparison with Langmuir double probe measurement shows that microwave resonance probe is applicable for measuring low electron density of plasma. The experimental results from the measurements of Ar/SF6 and SF6/O2 capacitively discharge driven by 40.68 MHz show that addition of SF6 into Ar plasma reduces the electron density significantly, with further increase of SF6 flow rate, electron density shows a gradual decrease. While for the addition ofO2 into SF6 discharge, the electron density continuously decreases with the increase ofO2 flow rate. Additionally, the electron density does not vary with lower frequency input power for SF6/O2 capacitively discharge driven by 40.68 MHz/13.56 MHz. The preliminary interpretations of the above experimental phenomena are presented.
-
Keywords:
- electronegative plasma /
- microwave resonance probe /
- electron density
[1] Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, LÜ Y,Wang G, Zhu Y 2007 Acta Phys. Sin. 56 2330 (in Chinese) [牛田野, 曹金祥, 刘磊, 刘金英, 王艳, 王亮, 吕铀, 王舸, 朱颖 2007 56 2330]
[2] Sun K, Xin Y, Huang X J, Yuan Q H, Ning Z Y 2008 Acta Phys. Sin. 57 6465 [孙恺, 辛煜, 黄晓江, 袁强华, 宁兆元 2008 57 6465]
[3] Godyak V A 1990 Plasma–Surface Interaction and Processing of Materials (Deventer: Kluwer) p95
[4] Godyak V A, Demidov V I 2011 J. Phys. D: Appl. Phys. 44 233001
[5] Kim J H, Seong D J, Lim J Y, Chung K H 2003 Appl. Phys. Lett. 83 4725
[6] Kim J H, Choi S C, Shin Y H, Chung K H 2004 Rev Sci Instrum 75 2706
[7] Kokura H , Nakamura K , Ghanashev I P, Sugai H 1999 Jpn. J. Appl. Phys. Part 1 38 5262
[8] Li B, Li H, Chen Z P, Xie J L, Liu W D 2010 J. Phys. D: Appl. Phys. 43 325203
[9] Dine S, Booth J P, Curley G A, Corr C S, Jolly J, Guillon J 2005 Plasma Sources Sci. Technol. 14 777
[10] Cao J X, Xu H L, Yu C X, Zeng L, Zhao H B, Ding W X, Xu B, Shen H G, Jin K 1995 Chinese Journal of Electronics 23 88(in Chinses) [曹金祥, 徐宏亮, 俞昌旋, 曾磊, 赵红波, 丁卫星, 许炳,沈海根, 金凯 1995 电子学报 23 88]
[11] Stenzel R L 1976 Rev Sci Instrum 47 603
[12] Kondrat’ev I G, Konstrov A V, Smirnov A I, Strikovskii A V, Shashurin A V 2002 Plasma Physics Reports 28 900
[13] Piejak R B, Godyak V A, Garner R, Alexandrovich B M 2004 J. App. Phys. 95 3785
[14] Piejak R B, Al Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734
[15] Sands B L, Siefert N S, Ganguly B N 2007 Plasma Sources Sci.Technol. 16 716
[16] Karkari S K, Ellingboe A R 2006 Appl. Phys. Lett. 88 101501
[17] Karkari S K, Ellingboe A R, Gaman C 2007 J. Appl. Phys. 102 063308
[18] Karkari S K, Gaman C, Ellingboe A R, Swindells I, Bradley J W 2007 Meas. Sci. Technol. 18 2649
[19] Karkari S K, Doggett B, Gaman C, Donnelly T, O’Farrell D, Ellingboe A R, Lunney J G 2008 Plasma Sources Sci. Technol. 17 032001
[20] Gogna G S, Karkaria S K 2010 Appl. Phys. Lett. 96 151503
[21] Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002
[22] Karkari S K, Gogna G S, Boilson D, TurneM M, Simonin A 2010 Contrib. Plasma Phys. 50 903
[23] Xu J Z, Nakamura K, Zhang Q, Sugai H 2009 Plasma Sources Sci. Technol. 18 045009
[24] Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206
[25] Yoo J, Kim K, Thamilselvan M, Lakshminarayn N, Kim Y K, Lee J, Yoo K J, Yi J 2008 J. Phys. D: Appl. Phys. 41 125205
[26] Yoo J 2010 Solar Energy 84 730
[27] Yoo J, Yu G, Yi J 2011 Solar Energy Materials & Solar Cells 95 2
[28] Sugai H 2005 Plasma Electronic Engineering (Beijing: Science Press) (in chinses) [菅井秀郎 等离子体电子工程学 2005(北京:科学出版社)]
[29] Jiang X Z, Liu Y X, Yang S, Lu W Q, Bi Z H, Li X S, Wang Y N 2011 J. Vac. Sci. Technol. A 29 011006
[30] Christophoroua L G , Olthoffb J K 2000 J. Phys. Chem. Ref. Data
[31] Picard A, Turban G, Grolleau 1986 J. Phys. D: Appl. Phys. 19 991
[32] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley) p360
[33] Brown M S, Scofield J D, Ganguly B N 2003 J. Appl. Phys. 94 822
[34] Yuan Q H, Xin Y, Yin G Q, Huang X J, Sun K, Ning Z Y 2008 J. Appl. Phys. 41 205209
-
[1] Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, LÜ Y,Wang G, Zhu Y 2007 Acta Phys. Sin. 56 2330 (in Chinese) [牛田野, 曹金祥, 刘磊, 刘金英, 王艳, 王亮, 吕铀, 王舸, 朱颖 2007 56 2330]
[2] Sun K, Xin Y, Huang X J, Yuan Q H, Ning Z Y 2008 Acta Phys. Sin. 57 6465 [孙恺, 辛煜, 黄晓江, 袁强华, 宁兆元 2008 57 6465]
[3] Godyak V A 1990 Plasma–Surface Interaction and Processing of Materials (Deventer: Kluwer) p95
[4] Godyak V A, Demidov V I 2011 J. Phys. D: Appl. Phys. 44 233001
[5] Kim J H, Seong D J, Lim J Y, Chung K H 2003 Appl. Phys. Lett. 83 4725
[6] Kim J H, Choi S C, Shin Y H, Chung K H 2004 Rev Sci Instrum 75 2706
[7] Kokura H , Nakamura K , Ghanashev I P, Sugai H 1999 Jpn. J. Appl. Phys. Part 1 38 5262
[8] Li B, Li H, Chen Z P, Xie J L, Liu W D 2010 J. Phys. D: Appl. Phys. 43 325203
[9] Dine S, Booth J P, Curley G A, Corr C S, Jolly J, Guillon J 2005 Plasma Sources Sci. Technol. 14 777
[10] Cao J X, Xu H L, Yu C X, Zeng L, Zhao H B, Ding W X, Xu B, Shen H G, Jin K 1995 Chinese Journal of Electronics 23 88(in Chinses) [曹金祥, 徐宏亮, 俞昌旋, 曾磊, 赵红波, 丁卫星, 许炳,沈海根, 金凯 1995 电子学报 23 88]
[11] Stenzel R L 1976 Rev Sci Instrum 47 603
[12] Kondrat’ev I G, Konstrov A V, Smirnov A I, Strikovskii A V, Shashurin A V 2002 Plasma Physics Reports 28 900
[13] Piejak R B, Godyak V A, Garner R, Alexandrovich B M 2004 J. App. Phys. 95 3785
[14] Piejak R B, Al Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734
[15] Sands B L, Siefert N S, Ganguly B N 2007 Plasma Sources Sci.Technol. 16 716
[16] Karkari S K, Ellingboe A R 2006 Appl. Phys. Lett. 88 101501
[17] Karkari S K, Ellingboe A R, Gaman C 2007 J. Appl. Phys. 102 063308
[18] Karkari S K, Gaman C, Ellingboe A R, Swindells I, Bradley J W 2007 Meas. Sci. Technol. 18 2649
[19] Karkari S K, Doggett B, Gaman C, Donnelly T, O’Farrell D, Ellingboe A R, Lunney J G 2008 Plasma Sources Sci. Technol. 17 032001
[20] Gogna G S, Karkaria S K 2010 Appl. Phys. Lett. 96 151503
[21] Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002
[22] Karkari S K, Gogna G S, Boilson D, TurneM M, Simonin A 2010 Contrib. Plasma Phys. 50 903
[23] Xu J Z, Nakamura K, Zhang Q, Sugai H 2009 Plasma Sources Sci. Technol. 18 045009
[24] Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206
[25] Yoo J, Kim K, Thamilselvan M, Lakshminarayn N, Kim Y K, Lee J, Yoo K J, Yi J 2008 J. Phys. D: Appl. Phys. 41 125205
[26] Yoo J 2010 Solar Energy 84 730
[27] Yoo J, Yu G, Yi J 2011 Solar Energy Materials & Solar Cells 95 2
[28] Sugai H 2005 Plasma Electronic Engineering (Beijing: Science Press) (in chinses) [菅井秀郎 等离子体电子工程学 2005(北京:科学出版社)]
[29] Jiang X Z, Liu Y X, Yang S, Lu W Q, Bi Z H, Li X S, Wang Y N 2011 J. Vac. Sci. Technol. A 29 011006
[30] Christophoroua L G , Olthoffb J K 2000 J. Phys. Chem. Ref. Data
[31] Picard A, Turban G, Grolleau 1986 J. Phys. D: Appl. Phys. 19 991
[32] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley) p360
[33] Brown M S, Scofield J D, Ganguly B N 2003 J. Appl. Phys. 94 822
[34] Yuan Q H, Xin Y, Yin G Q, Huang X J, Sun K, Ning Z Y 2008 J. Appl. Phys. 41 205209
计量
- 文章访问数: 8160
- PDF下载量: 845
- 被引次数: 0