搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种测量p-GaN载流子浓度的方法

周梅 赵德刚

引用本文:
Citation:

一种测量p-GaN载流子浓度的方法

周梅, 赵德刚

A new method to measure the carrier concentration of p-GaN

Zhao De-Gang, Zhou Mei
PDF
导出引用
  • 提出了一种测量p-GaN载流子浓度的方法,其主要思想是利用p-n+结构GaN探测器长波和短波量子效率的差值随反向偏压的变化关系,找到p-GaN层刚好完全耗尽时的偏压,从而求出p-GaN层载流子浓度.模拟计算表明,该方法能够准确测量出p-GaN层的载流子浓度,而且受表面复合、欧姆接触影响很小.进一步研究了实际测量中如何选择p-GaN层厚度,计算结果表明,p-GaN层的优化厚度值随着p-GaN层的浓度增加而减小.
    A new method to measure the carrier concentration of p-GaN is proposed. The main idea is as follows: the difference between p-n+ structure GaN ultraviolet photodetector’s quantum efficiency at two different wavelengths varies remarkably with increasing reversed bias, and the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted, consequently the carrier concentration of p-GaN can be derived basing on this effect. The simulation results prove the validity of the idea even under the condition of high surface recombination velocity and bad ohmic contact. The thickness choice of p-GaN samples during the carrier concentration test experiment using this method is investigated. It is shown that the optimized thickness of p-GaN decreases with the increase of carrier concentration of p-GaN samples.
    • 基金项目: 集成光电子学国家重点实验室开放课题(批准号:IOSKL-KF200914)和中央高校基本科研业务费专项资金(批准号:2009JS46, 2009-2-05)资助的课题.
    [1]

    Nakamura S 1998 Science 281 956

    [2]

    Amano H, Kito M, Hiramatsu K, Akasaki I 1989 Inst. Phys. Conf. Ser. 106 725

    [3]

    Amano H, Kito M, Hiramatsu K, Akasaki I 1989 Jpn. J. Appl. Phys. 28 L2112

    [4]

    Nakamura S, Mukai T, Senoh M, Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139

    [5]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258

    [6]

    Nakamura S, Senoh M, Mukai T 1994 Appl. Phys. Lett. 64 1687

    [7]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74

    [8]

    Zhang S, Zhao D G, Liu Z S, Zhu J J, Zhang S M, Wang Y T, Duan L H, Liu W B, Jiang D S, Yang H 2009 Acta Phys. Sin. 58 7952 (in Chinese) [张 爽、赵德刚、刘宗顺、朱建军、张书明、王玉田、段俐宏、刘文宝、江德生、杨 辉 2009 58 7952]

    [9]

    Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z P 2004 Acta Phys. Sin. 53 2720 (in Chinese) [罗 毅、郭文平、邵嘉平、胡 卉、韩彦军、薛 松、汪 莱、孙长征、郝智彪 2004 53 2720]

    [10]

    Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T, Yang H 2010 Chin. Phys. B 19 017307

    [11]

    Zhang L Q, Zhang S M, Jiang D S, Wang H, Zhu J J, Zhao D G, Liu Z S, Yang H 2009 Chin. Phys. B 18 5350

    [12]

    Zhou M, Zuo S H, Zhao D G 2007 Acta Phys. Sin. 56 5513 (in Chinese) [周 梅、左淑华、赵德刚 2007 56 5513]

    [13]

    Hu Z H, Liao X B, Diao H W, Xia C F, Xu L, Zeng X B, Hao H Y, Kong G L, 2005 Acta Phys. Sin. 54 2302 (in Chinese) [胡志华、廖显伯、刁宏伟、夏朝凤、许 玲、曾湘波、郝会颖、孔光临 2005 54 2302]

    [14]

    Zhao D G, Jiang D S, Zhu J J, Liu Z S, Zhang S M, Yang H 2008 Semicond. Sci. Technol. 23 095021

    [15]

    Zhang X, Kung P, Walker D, Biotrowski J, Rogalski A, Sazier A, Razeghi M 1995 Appl. Phys. Lett. 67 2028

    [16]

    Sze S M 1981 Physics of Semiconductor Devices, 2nd edn (New York: Wiley)

    [17]

    Zhao D G, Zhang S, Liu W B, Hao X P, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Yang H, Wei L, 2010 Chin. Phys. B 19 057802

  • [1]

    Nakamura S 1998 Science 281 956

    [2]

    Amano H, Kito M, Hiramatsu K, Akasaki I 1989 Inst. Phys. Conf. Ser. 106 725

    [3]

    Amano H, Kito M, Hiramatsu K, Akasaki I 1989 Jpn. J. Appl. Phys. 28 L2112

    [4]

    Nakamura S, Mukai T, Senoh M, Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139

    [5]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258

    [6]

    Nakamura S, Senoh M, Mukai T 1994 Appl. Phys. Lett. 64 1687

    [7]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74

    [8]

    Zhang S, Zhao D G, Liu Z S, Zhu J J, Zhang S M, Wang Y T, Duan L H, Liu W B, Jiang D S, Yang H 2009 Acta Phys. Sin. 58 7952 (in Chinese) [张 爽、赵德刚、刘宗顺、朱建军、张书明、王玉田、段俐宏、刘文宝、江德生、杨 辉 2009 58 7952]

    [9]

    Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z P 2004 Acta Phys. Sin. 53 2720 (in Chinese) [罗 毅、郭文平、邵嘉平、胡 卉、韩彦军、薛 松、汪 莱、孙长征、郝智彪 2004 53 2720]

    [10]

    Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T, Yang H 2010 Chin. Phys. B 19 017307

    [11]

    Zhang L Q, Zhang S M, Jiang D S, Wang H, Zhu J J, Zhao D G, Liu Z S, Yang H 2009 Chin. Phys. B 18 5350

    [12]

    Zhou M, Zuo S H, Zhao D G 2007 Acta Phys. Sin. 56 5513 (in Chinese) [周 梅、左淑华、赵德刚 2007 56 5513]

    [13]

    Hu Z H, Liao X B, Diao H W, Xia C F, Xu L, Zeng X B, Hao H Y, Kong G L, 2005 Acta Phys. Sin. 54 2302 (in Chinese) [胡志华、廖显伯、刁宏伟、夏朝凤、许 玲、曾湘波、郝会颖、孔光临 2005 54 2302]

    [14]

    Zhao D G, Jiang D S, Zhu J J, Liu Z S, Zhang S M, Yang H 2008 Semicond. Sci. Technol. 23 095021

    [15]

    Zhang X, Kung P, Walker D, Biotrowski J, Rogalski A, Sazier A, Razeghi M 1995 Appl. Phys. Lett. 67 2028

    [16]

    Sze S M 1981 Physics of Semiconductor Devices, 2nd edn (New York: Wiley)

    [17]

    Zhao D G, Zhang S, Liu W B, Hao X P, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Yang H, Wei L, 2010 Chin. Phys. B 19 057802

  • [1] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器.  , 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [2] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器.  , 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [3] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术.  , 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [4] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管.  , 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [5] 周梅, 李春燕, 赵德刚. 利用p-n+结反向I-V特性计算p-GaN载流子浓度的方法.  , 2016, 65(19): 197302. doi: 10.7498/aps.65.197302
    [6] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [7] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究.  , 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [8] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究.  , 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [9] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率.  , 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [10] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响.  , 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [11] 刘红侠, 高博, 卓青青, 王勇淮. 极化效应对AlGaN/GaN异质结p-i-n光探测器的影响.  , 2012, 61(5): 057802. doi: 10.7498/aps.61.057802
    [12] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [13] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响.  , 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [14] 周梅, 赵德刚. 以弱p型为有源区的新型p-n结构GaN紫外探测器.  , 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [15] 张爽, 赵德刚, 刘宗顺, 朱建军, 张书明, 王玉田, 段俐宏, 刘文宝, 江德生, 杨辉. 穿透型V形坑对GaN基p-i-n结构紫外探测器反向漏电的影响.  , 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [16] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法.  , 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [17] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.  , 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [18] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究.  , 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [19] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器.  , 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [20] 张春福, 郝 跃, 游海龙, 张金凤, 周小伟. 界面电偶极子对GaN/AlGaN/GaN光电探测器紫外/太阳光选择比的影响.  , 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
计量
  • 文章访问数:  10725
  • PDF下载量:  896
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-22
  • 修回日期:  2010-07-06
  • 刊出日期:  2011-03-15

/

返回文章
返回
Baidu
map