搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用p-n+结反向I-V特性计算p-GaN载流子浓度的方法

周梅 李春燕 赵德刚

引用本文:
Citation:

利用p-n+结反向I-V特性计算p-GaN载流子浓度的方法

周梅, 李春燕, 赵德刚

A new method to estimate the p-GaN carrier concentration by analyzing the reversed current-voltage characteristic curve of p-n+ junction diode

Zhou Mei, Li Chun-Yan, Zhao De-Gang
PDF
导出引用
  • 提出了一种利用p-n+结反向I-V特性随偏压变化的关系计算p-GaN载流子浓度的方法.研究发现,当p-n+中的p-GaN层没有完全耗尽时,反向电流比较小,属于正常的p-n结电流特性,当反向偏压增加到一定值时,p-GaN层就完全耗尽,p-n+结特性就变成了肖特基结特性,反向电流显著增加.找到达到稳定反向电流的临界电压值,就可以计算出p-GaN的载流子浓度.模拟结果验证了这个思想,计算得到的p-GaN载流子浓度与设定值基本一致.
    GaN and its related nitride materials have been investigated for many years due to their extensive applications in semiconductor optoelectronics and microelectronics. The realization of p-GaN plays a key role in developing the GaN-based optoelectronic devices such as light-emittingdiodes, laser diodes and ultraviolet photodetectors. Furthermore, it is very significant to acuurately obtain the carrier concentration value of p-GaN layer for device design and fabrication. Usually the Hall measurements are employed to obtain the hole concentration of p-GaN layer. However, this method is not suitable for very thin samples, especially the p-GaN layer in the device structure, which is commonly very thin. Furthermore, the good Ohmic contact to p-GaN is not easy to realize. In consideration of the importance of p-GaN in determining the performance of GaN-based devices, it is necessary to find other new methods to measure or check the carrier concentration data of p-GaN. In this paper, a new method to estimate the carrier concentration of p-GaN by analyzing the current-voltage characteristic curve of p-GaN/n+-GaN diode is proposed. The main physical process is as follows: generally the carrrier concentration of p-GaN layer is far less than that of n+-GaN layer, and the depleted region is mainly located in the p-GaN. When the reversed bias voltage is very small, the diode shows conventional properties of p-n+ junction and the corresponding reversed current is very low since the p-GaN is not completely depleted. With the increase of reversed bias voltage, the depleted region of p-GaN also increases. Once the p-GaN is completely depleted, the case turns different. The diode will show Schottky junction properties and the corresponding reversed current increases obviously when the p-GaN is completely depleted under a certain reversed bias voltage since the ideal reversed current of Schottky junction is larger than that of p-n+ junction. The hole concentration could be derived according to the device physics if the bias voltage is discovered, which leads to the properties changing from the p-n+ junction to conventional Schottky junction. The simulation results confirm the idea, and the calculated p-GaN carrier concentration is almost equal to the originally assumed value. The proposed method is interesting and may be helpful to accelerate the research of p-GaN and related optoelectronic devices.
      通信作者: 赵德刚, dgzhao@red.semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61474142,21403297和11474355)资助的课题.
      Corresponding author: Zhao De-Gang, dgzhao@red.semi.ac.cn
    • Funds: Projects Project supported by National Natural Science Foundation of China (Grant Nos. 61474142, 21403297, 11474355).
    [1]

    Amano H, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353

    [2]

    Amano H, Akasaki, Hiramatsu K, Koide N, Sawaki N 1988 Thin Solid Films 163 415

    [3]

    Nakamura S, Mukai T, Senoh M, Iwasa N 1992 Jpn. J. Appl. Phys. Part 2 31 L139

    [4]

    Nakamura S, Senoh M, Mukai T 1994 Appl. Phys. Lett. 64 1687

    [5]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74

    [6]

    Nakamura S 1998 Science 281 956

    [7]

    Hardy M T, Feezell D F, DenBaars S P, Nakamura S 2011 Mater. Today 14 408

    [8]

    Alaie Z, Nejad S M, and Yousefi M H 2015 Mat. Sci. Semicon. Proc. 29 16

    [9]

    Zhou M, Zhao D G 2012 Acta Phys. Sin. 61 168402 (in Chinese) [周梅, 赵德刚2012 61 168402]

    [10]

    Zhou M, Zhao D G 2008 Acta Phys. Sin. 57 4570 (in Chinese) [周梅, 赵德刚2008 57 4570]

    [11]

    Zhao D G, Jiang D S, Zhu J J, Liu Z S, Zhang S M, Yang H 2008 Semicond. Sci. Technol. 23 095021

    [12]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: John Wiley and Sons) p77

  • [1]

    Amano H, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353

    [2]

    Amano H, Akasaki, Hiramatsu K, Koide N, Sawaki N 1988 Thin Solid Films 163 415

    [3]

    Nakamura S, Mukai T, Senoh M, Iwasa N 1992 Jpn. J. Appl. Phys. Part 2 31 L139

    [4]

    Nakamura S, Senoh M, Mukai T 1994 Appl. Phys. Lett. 64 1687

    [5]

    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74

    [6]

    Nakamura S 1998 Science 281 956

    [7]

    Hardy M T, Feezell D F, DenBaars S P, Nakamura S 2011 Mater. Today 14 408

    [8]

    Alaie Z, Nejad S M, and Yousefi M H 2015 Mat. Sci. Semicon. Proc. 29 16

    [9]

    Zhou M, Zhao D G 2012 Acta Phys. Sin. 61 168402 (in Chinese) [周梅, 赵德刚2012 61 168402]

    [10]

    Zhou M, Zhao D G 2008 Acta Phys. Sin. 57 4570 (in Chinese) [周梅, 赵德刚2008 57 4570]

    [11]

    Zhao D G, Jiang D S, Zhu J J, Liu Z S, Zhang S M, Yang H 2008 Semicond. Sci. Technol. 23 095021

    [12]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: John Wiley and Sons) p77

  • [1] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术.  , 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [2] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺. 1000 V p-GaN混合阳极AlGaN/GaN二极管.  , 2018, 67(19): 198501. doi: 10.7498/aps.67.20181208
    [3] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率.  , 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [4] 王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚. ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响.  , 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [5] 刘红侠, 高博, 卓青青, 王勇淮. 极化效应对AlGaN/GaN异质结p-i-n光探测器的影响.  , 2012, 61(5): 057802. doi: 10.7498/aps.61.057802
    [6] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响.  , 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [7] 周梅, 赵德刚. 一种测量p-GaN载流子浓度的方法.  , 2011, 60(3): 037804. doi: 10.7498/aps.60.037804
    [8] 张爽, 赵德刚, 刘宗顺, 朱建军, 张书明, 王玉田, 段俐宏, 刘文宝, 江德生, 杨辉. 穿透型V形坑对GaN基p-i-n结构紫外探测器反向漏电的影响.  , 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [9] 哈力木拉提, 阿 拜, 拜 山, 艾买提. p-n结二极管结区边界附近的交流电特性.  , 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [10] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性.  , 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [11] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.  , 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [12] 李 彤, 王怀兵, 刘建平, 牛南辉, 张念国, 邢艳辉, 韩 军, 刘 莹, 高 国, 沈光地. Delta掺杂制备p-GaN薄膜及其电性能研究.  , 2007, 56(2): 1036-1040. doi: 10.7498/aps.56.1036
    [13] 刘彦欣, 王永昌, 杜少毅. 单电子三势垒隧穿结I-V特性研究.  , 2004, 53(8): 2734-2740. doi: 10.7498/aps.53.2734
    [14] 刘 明, 刘 宏, 何宇亮. 纳米硅/单晶硅异质结二极管的I-V特性.  , 2003, 52(11): 2875-2878. doi: 10.7498/aps.52.2875
    [15] 彭英才, 徐刚毅, 何宇亮, 刘 明, 李月霞. (n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究.  , 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
    [16] 刘曾荣, 江霞妹, 韩志斌, 顾国庆. Josephson结的I-V曲线的子台阶.  , 1990, 39(5): 823-829. doi: 10.7498/aps.39.823
    [17] 钱敏, 潘涛, 刘曾荣. Josephson结的I-V曲线的理论分析.  , 1987, 36(2): 149-156. doi: 10.7498/aps.36.149
    [18] 冯锡淇, 骆宾章. 升华外延碳化硅p-n结的性质.  , 1980, 29(1): 1-10. doi: 10.7498/aps.29.1
    [19] 魏希文. 未耗尽载流子对P-N结反向特性的影响.  , 1966, 22(7): 781-797. doi: 10.7498/aps.22.781
    [20] 王守武, 庄蔚华, 彭怀德, 庄婉如. 砷化镓p-n结的受激发射的光谱特性.  , 1965, 21(5): 1077-1079. doi: 10.7498/aps.21.1077
计量
  • 文章访问数:  5694
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-01
  • 修回日期:  2016-05-02
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map