-
为了保证在低温加工及溶液制备的情况下,能够提升高度区域规则的聚(3-己基噻吩) (RR-P3HT)有机场效应晶体管(OFET)的器件性能,本文研究了室温下乙醇及乙腈非溶剂的掺杂,及其对高分子自组织机理与导致的RR-P3HT OFET电学性能的影响.实验发现,适量进行乙醇及乙腈非溶剂的掺杂,将促进RR-P3HT薄膜形成更多期望的微晶粒薄片结构,完善高分子自组织机理,导致RR-P3HT OFET电学性能的提升.实验表明,在RR-P3HT溶液中进行5 %乙腈添加后,其器件场效应迁移率的值由原来的4.04×10<
-
关键词:
- 高度区域规则的聚(3-己基噻吩)有机场效应晶体管 /
- 非溶剂掺杂 /
- 自组织机理 /
- 场效应迁移率
In order to enhance the performance of poly(3-hexylthiophene) (RR-P3HT) organic field-effect transistors (OFET) by low temperature solution-process of non-solvent addition (acetonitrile and ethanol), the resulting self-organization of polymer semiconductor layer and performance of RR-P3HT OFET are studied in this paper. The results fshow that an appropriate non-solvent addition (acetonitrile and ethanol) promotes the formation of more microcrystalline lamellae and improves the self-organization of polymer semiconductor layer, resulting in electrical properties enhancement of polymer OFET. The results indicate that the field-effect of RR-P3HT OFET with 5% acetonitrile addition can reach 3.39×10-3 cm2/V ·s, which is higher by a factor of 8 than that with 0% acetonitrile addition. Encessive non-solvent addition (acetonitrile and ethanol) leads to more precipitates which reduce microcrystalline lamellae and lowers the quality of polymer film, resulting in performance degradation of polymer OFET.-
Keywords:
- regioregular poly(3-hexylthiophene) organic field-effect transistor /
- non-solvent addition /
- self-organization /
- field-effect mobility
[1] Bao Z, Dodabalapur A, Lovinger A J 1996 Appl. Phys. Lett. 69 4108
[2] Ong B S, Wu Y, Liu P, Gardner S 2004 J. Am. Chem. Soc. 126 3378
[3] Sirringhaus H, Tessler N, Friend R H 1998 Science 280 1741
[4] Tian X Y, Xu Z, Zhao S L, Zhang F J, Xu X R, Yuan G C, Li J, Sun Q J 2010 Chin. Phys. B 19 018103
[5] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M 1999 Nature (London) 401 685
[6] Chang J F, Sun B, Breiby D W, Nielsen M M, Slling T I, Giles M, McCulloch I, Sirringhaus H 2004 Chem. Mater. 16 4772
[7] Moulé A J, Meerholz K 2008 Adv. Mater. 20 240
[8] Yang X, Lu G, Li L 2008 J. Mater. Chem. 18 1984
[9] Kiriy N, Jhne E, Adler H J, Schneider M, Kiriy A, Gorodyska G, Minko S, Jehnichen D, Simon P, Fokin A A, Stamm M 2003 Nano. Lett. 3 707
[10] Berson S, Bettignies R D, Bailly S, Guillerez S 2007 Adv. Funct. Mater. 17 1377
[11] Park Y D, Lee H S, Choi Y J, Kwak D, Cho J H, Lee S, Cho K 2009 Adv. Funct. Mater. 19 1
[12] Singh T B, Sariciftci N S 2006 Annu. Rev. Mater. Res. 36 199
[13] Dimitrakopoulos C D, Mascaro D J 2001 IBM J. Res. & Dev. 45 11
[14] Tao C L, Zhang X H, Dong M J, Liu Y Y, Sun Shuo, Ou G P, Zhang F J, Zhang H L 2008 Chin. Phys. B 17 281
[15] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li S Y, Huang J Y, Huang H, Xu X R 2008 Chin. Phys. B 17 1887
[16] Lan Y K, Huang C 2008 J. Phys. Chem. B 112 14857
[17] Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I, Moon D G, Park S, Chang T, Chang C, Joo M, Ryu C Y 2005 Adv. Funct. Mater. 15 77
[18] Loo Y 2007 AIChE Journal 53 1066
[19] Kline R J, Mcgehee M D, Toney M F, 2006 Nature (London) 5 222
-
[1] Bao Z, Dodabalapur A, Lovinger A J 1996 Appl. Phys. Lett. 69 4108
[2] Ong B S, Wu Y, Liu P, Gardner S 2004 J. Am. Chem. Soc. 126 3378
[3] Sirringhaus H, Tessler N, Friend R H 1998 Science 280 1741
[4] Tian X Y, Xu Z, Zhao S L, Zhang F J, Xu X R, Yuan G C, Li J, Sun Q J 2010 Chin. Phys. B 19 018103
[5] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M 1999 Nature (London) 401 685
[6] Chang J F, Sun B, Breiby D W, Nielsen M M, Slling T I, Giles M, McCulloch I, Sirringhaus H 2004 Chem. Mater. 16 4772
[7] Moulé A J, Meerholz K 2008 Adv. Mater. 20 240
[8] Yang X, Lu G, Li L 2008 J. Mater. Chem. 18 1984
[9] Kiriy N, Jhne E, Adler H J, Schneider M, Kiriy A, Gorodyska G, Minko S, Jehnichen D, Simon P, Fokin A A, Stamm M 2003 Nano. Lett. 3 707
[10] Berson S, Bettignies R D, Bailly S, Guillerez S 2007 Adv. Funct. Mater. 17 1377
[11] Park Y D, Lee H S, Choi Y J, Kwak D, Cho J H, Lee S, Cho K 2009 Adv. Funct. Mater. 19 1
[12] Singh T B, Sariciftci N S 2006 Annu. Rev. Mater. Res. 36 199
[13] Dimitrakopoulos C D, Mascaro D J 2001 IBM J. Res. & Dev. 45 11
[14] Tao C L, Zhang X H, Dong M J, Liu Y Y, Sun Shuo, Ou G P, Zhang F J, Zhang H L 2008 Chin. Phys. B 17 281
[15] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li S Y, Huang J Y, Huang H, Xu X R 2008 Chin. Phys. B 17 1887
[16] Lan Y K, Huang C 2008 J. Phys. Chem. B 112 14857
[17] Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I, Moon D G, Park S, Chang T, Chang C, Joo M, Ryu C Y 2005 Adv. Funct. Mater. 15 77
[18] Loo Y 2007 AIChE Journal 53 1066
[19] Kline R J, Mcgehee M D, Toney M F, 2006 Nature (London) 5 222
计量
- 文章访问数: 8128
- PDF下载量: 616
- 被引次数: 0