搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟

颜克凤 李小森 陈朝阳 徐纯钢

引用本文:
Citation:

整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟

颜克凤, 李小森, 陈朝阳, 徐纯钢

Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation

Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Xu Chun-Gang
PDF
导出引用
  • 利用分子动力学(MD)模拟方法研究整体煤气化联合循环(IGCC)合成气(CO2/H2)水合物法分离CO2的分离机理,系统研究了CO2水合物、H2水合物以及合成气水合物法一级分离所得CO2/H2混合气体水合物的微观结构及性质.模拟分析n个CO2或H2与水合物笼状结构的整体结合能ΔE
    Molecular dynamics (MD) simulation is used to study the microscopic mechanism of CO2 separation from integrated gasification combined cycle(IGCC) syngas (CO2/H2) via the hydrate formation. The stable structures and microscopic properties of CO2 hydrate, H2 hydrate, and CO2/H2 hydrate from one stage separation for IGCC syngas are investigated systematically. The binding energy for loading the hydrate structure with the guest molecules, ΔEn, was analyzed. It was shown that the binding between CO2 and water is more stable than that between H2 and water. That is, CO2 can more easily form the hydrate. Therefore, CO2 in the CO2/H2 gas mixture more easily transfers into the hydrate phase. Based on this, CO2 can be separated from the IGCC syngas. The binding energy for loading the single cavity with the guest molecules, ΔEGH, was analyzed. It was found that the gas mixture can form structure Ⅰ(SⅠ) hydrate, in which CO2 molecules preferably occupy the big cavity and then occupy the small cavity, and H2 molecules only occupy the small cavity. The simulation was carried out at pressure of 85 MPa and temperature of 2737 K for the stable structure of the CO2/H2 hydrate in one stage separation for IGCC syngas. From the ΔEn and ΔEGH of the systems with H2 single and double occupancy in the small cavity, it is concluded that the configurations with the single occupancy is most stable. The stable structure of the hydrate in one stage separation is attained by MD. It provides a theoretical evidence of CO2 separation for formation hydrate in IGCC syngas.
    • 基金项目: 国家自然科学基金(批准号:20773133, 20676133)、广东省科技计划(批准号:2009B050600006)、中国科学院知识创新工程重要方向性项目(批准号:KGCX2-YW-3X6)、国家高技术研究发展计划(批准号:2006AA05Z319)、广东省自然科学基金(批准号:07301638)和中国科学院重大科研装备研制计划(批准号:YZ200717)资助的课题.
    [1]

    [1]Perinline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B 2008 Fuel. Process. Technol. 89 897

    [2]

    [2]Aaron D, Tsouris C 2005 Sep. Sci. Technol. 40 321

    [3]

    [3]Ishida M, Zheng D, Akehata T 1987 Energy 12 147

    [4]

    [4]Winnick J, Toghiani H, Quattrone P 1982 AICHE J. 28 103

    [5]

    [5]Linga P, Kumar R, Englezos P 2007 J. Hazard. Mater. 149 625

    [6]

    [6]Glew D N 1966 U. S. Patent 3231630

    [7]

    [7]Elliot D G, Chen J J 1977 U. S. Patent 5660603

    [8]

    [8]Happel J, Hnatow M A, Meyer H 1994 Ann. N. Y. Acad. Sci. 715 412

    [9]

    [9]Kang S P, Lee H, Lee C S, Sung W M 2001 Fluid Phase Equilib. 185 101

    [10]

    ]Park J, Seo Y T, Lee J W, Lee H 2006 Catal. Today. 115 279

    [11]

    ]Ma C F, Chen G J, Zhang S X, Wang F, Guo T M 2001 J. Chem. Ind. Eng. 52 1113 (in Chinese) [马昌峰、陈光进、张世喜、王峰、郭天民 2001 化工学报 52 1113]

    [12]

    ]Zhang S X, Chen G J, Guo T M 2004 J. Univ. Petrol. 28 95 (in Chinese) [张世喜、陈光进、郭天民 2004 石油大学学报 28 95]

    [13]

    ]Li D L, Du J W, Fan S S, Liang D Q, Li X S, Huang N S 2007 J. Chem. Eng. Data 52 1916

    [14]

    ]Li X S, Lu T, Chen Z Y, Yan K F, Li G 2009 Mod. Chem. Ind. 29(10) 37 (in Chinese)[李小森、鲁涛、陈朝阳、颜克凤、李刚 2009 现代化工 29(10) 37]

    [15]

    ]Zhu C Z, Zhang P X, Xu Q M, Liu J H, Ren X Z, Zhang Q L, Hong W L, Li L L 2006 Acta Phys. Sin. 55 4795 (in Chinese) [朱才镇、张培新、许启明、刘剑洪、任祥忠、张黔玲、洪伟良、李琳琳 2006 55 4795]

    [16]

    ]Geng C Y, Wang C Y, Zhu T 2005 Acta Phys. Sin. 54 1320(in Chinese) [耿翠玉、王崇愚、朱弢 2005 54 1320]

    [17]

    ]Chen M J, Liang Y C, Li H Z, Li D 2006 Chin. Phys. 15 2087

    [18]

    ]Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [19]

    ]Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [20]

    ]Chialvo A A, Houssa M, Cummings P T 2002 J. Phys. Chem. B 106 442

    [21]

    ]Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q Z, Hu J Z, Shu J F, Hemley R J, Somayazulu M, Zhao Y S 2002 Science 297 2247

    [22]

    ]Storr M T, Taylor P C, Monfort J P, Eodger P M 2004 J. Am. Chem. Soc. 126 1569

    [23]

    ]Yan K F, Li X S, Chen Z Y, Li G, Tang L G, Fan S S 2007 Acta Phys. Sin. 56 4994 (in Chinese) [颜克凤、李小森、陈朝阳、李刚、唐良广、樊栓狮 2007 56 4994]

    [24]

    ]Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [25]

    ]Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [26]

    ]Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J 1981 In Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry (Dordrecht: D. Reidel Publishing Co.) p331

    [27]

    ]Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [28]

    ]Dauber O P, Roberts V A, Osguthorpe D J, Wolff J, Genest M, Hagler A T 1988 Proteins: Struct. Funct. Genet. 4 31

    [29]

    ]Ewald P P 1921 Ann. Phys. 64 253

    [30]

    ]Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [31]

    ]Nose S A 1984 Mol. Phys. 52 255

    [32]

    ]Chen Z L, Xu W R, Tang L D 2007 Practice and Theory of Molecular Simulation (Beijing: Chemical Industry Press) p4 (in Chinese) [陈正隆、徐为人、汤立达 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第4页]

    [33]

    ]Cygan R T, Guggenheim S, van Groos A F K 2004 J. Phys. Chem. B 108 15141

    [34]

    ]Greathouse J A, Cygan R T 2008 The 6th International Conference on Gas Hydrates (Vancouver: British Columbia) p5529

    [35]

    ]Udachin K A, Ratcliffc C I, Ripmeester J A 2001 J. Phys. Chem. B 105 4200

    [36]

    ]Zhou Z E, Xue C Y, Yang Q Y, Zhong C L 2009 Acta Chim. Sin. 67 477 (in Chinese) [周子娥、薛春瑜、阳庆元、仲崇立 2009 化学学报 67 477]

    [37]

    ]Zhang L, Wang Q, Liu Y 2007 J. Phys. Chem. B 111 4291

    [38]

    ]Babarao R, Jiang J W 2008 Langmuir 24 6270

    [39]

    ]Ota M, Ferdows M 2005 JSME Int. J. 48 802

    [40]

    ]Van Klaveren E P, Michels J P J, Schouten J A 2001 J. Chem. Phys. 115 10500

    [41]

    ]Kim D Y, Lee H 2005 J. Am. Chem. Soc. 127 9996

  • [1]

    [1]Perinline H W, Luebke D R, Jones K L, Myers C R, Morsi B I, Heintz Y J, Ilconich J B 2008 Fuel. Process. Technol. 89 897

    [2]

    [2]Aaron D, Tsouris C 2005 Sep. Sci. Technol. 40 321

    [3]

    [3]Ishida M, Zheng D, Akehata T 1987 Energy 12 147

    [4]

    [4]Winnick J, Toghiani H, Quattrone P 1982 AICHE J. 28 103

    [5]

    [5]Linga P, Kumar R, Englezos P 2007 J. Hazard. Mater. 149 625

    [6]

    [6]Glew D N 1966 U. S. Patent 3231630

    [7]

    [7]Elliot D G, Chen J J 1977 U. S. Patent 5660603

    [8]

    [8]Happel J, Hnatow M A, Meyer H 1994 Ann. N. Y. Acad. Sci. 715 412

    [9]

    [9]Kang S P, Lee H, Lee C S, Sung W M 2001 Fluid Phase Equilib. 185 101

    [10]

    ]Park J, Seo Y T, Lee J W, Lee H 2006 Catal. Today. 115 279

    [11]

    ]Ma C F, Chen G J, Zhang S X, Wang F, Guo T M 2001 J. Chem. Ind. Eng. 52 1113 (in Chinese) [马昌峰、陈光进、张世喜、王峰、郭天民 2001 化工学报 52 1113]

    [12]

    ]Zhang S X, Chen G J, Guo T M 2004 J. Univ. Petrol. 28 95 (in Chinese) [张世喜、陈光进、郭天民 2004 石油大学学报 28 95]

    [13]

    ]Li D L, Du J W, Fan S S, Liang D Q, Li X S, Huang N S 2007 J. Chem. Eng. Data 52 1916

    [14]

    ]Li X S, Lu T, Chen Z Y, Yan K F, Li G 2009 Mod. Chem. Ind. 29(10) 37 (in Chinese)[李小森、鲁涛、陈朝阳、颜克凤、李刚 2009 现代化工 29(10) 37]

    [15]

    ]Zhu C Z, Zhang P X, Xu Q M, Liu J H, Ren X Z, Zhang Q L, Hong W L, Li L L 2006 Acta Phys. Sin. 55 4795 (in Chinese) [朱才镇、张培新、许启明、刘剑洪、任祥忠、张黔玲、洪伟良、李琳琳 2006 55 4795]

    [16]

    ]Geng C Y, Wang C Y, Zhu T 2005 Acta Phys. Sin. 54 1320(in Chinese) [耿翠玉、王崇愚、朱弢 2005 54 1320]

    [17]

    ]Chen M J, Liang Y C, Li H Z, Li D 2006 Chin. Phys. 15 2087

    [18]

    ]Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [19]

    ]Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [20]

    ]Chialvo A A, Houssa M, Cummings P T 2002 J. Phys. Chem. B 106 442

    [21]

    ]Mao W L, Mao H K, Goncharov A F, Struzhkin V V, Guo Q Z, Hu J Z, Shu J F, Hemley R J, Somayazulu M, Zhao Y S 2002 Science 297 2247

    [22]

    ]Storr M T, Taylor P C, Monfort J P, Eodger P M 2004 J. Am. Chem. Soc. 126 1569

    [23]

    ]Yan K F, Li X S, Chen Z Y, Li G, Tang L G, Fan S S 2007 Acta Phys. Sin. 56 4994 (in Chinese) [颜克凤、李小森、陈朝阳、李刚、唐良广、樊栓狮 2007 56 4994]

    [24]

    ]Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [25]

    ]Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [26]

    ]Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J 1981 In Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry (Dordrecht: D. Reidel Publishing Co.) p331

    [27]

    ]Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [28]

    ]Dauber O P, Roberts V A, Osguthorpe D J, Wolff J, Genest M, Hagler A T 1988 Proteins: Struct. Funct. Genet. 4 31

    [29]

    ]Ewald P P 1921 Ann. Phys. 64 253

    [30]

    ]Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [31]

    ]Nose S A 1984 Mol. Phys. 52 255

    [32]

    ]Chen Z L, Xu W R, Tang L D 2007 Practice and Theory of Molecular Simulation (Beijing: Chemical Industry Press) p4 (in Chinese) [陈正隆、徐为人、汤立达 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第4页]

    [33]

    ]Cygan R T, Guggenheim S, van Groos A F K 2004 J. Phys. Chem. B 108 15141

    [34]

    ]Greathouse J A, Cygan R T 2008 The 6th International Conference on Gas Hydrates (Vancouver: British Columbia) p5529

    [35]

    ]Udachin K A, Ratcliffc C I, Ripmeester J A 2001 J. Phys. Chem. B 105 4200

    [36]

    ]Zhou Z E, Xue C Y, Yang Q Y, Zhong C L 2009 Acta Chim. Sin. 67 477 (in Chinese) [周子娥、薛春瑜、阳庆元、仲崇立 2009 化学学报 67 477]

    [37]

    ]Zhang L, Wang Q, Liu Y 2007 J. Phys. Chem. B 111 4291

    [38]

    ]Babarao R, Jiang J W 2008 Langmuir 24 6270

    [39]

    ]Ota M, Ferdows M 2005 JSME Int. J. 48 802

    [40]

    ]Van Klaveren E P, Michels J P J, Schouten J A 2001 J. Chem. Phys. 115 10500

    [41]

    ]Kim D Y, Lee H 2005 J. Am. Chem. Soc. 127 9996

  • [1] 周晗, 耿轶钊, 晏世伟. Nutlin-3a对p53-MDM2复合物稳定性影响.  , 2023, 72(6): 068702. doi: 10.7498/aps.72.20222441
    [2] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [4] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究.  , 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [6] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [7] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟.  , 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [8] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [9] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟.  , 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [10] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [11] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响.  , 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [12] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [13] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究.  , 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [14] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究.  , 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [15] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象.  , 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [16] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究.  , 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [17] 颜克凤, 李小森, 陈朝阳, 李 刚, 唐良广, 樊栓狮. 用分子动力学模拟甲烷水合物热激法分解.  , 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [18] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解.  , 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [19] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型.  , 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
计量
  • 文章访问数:  8874
  • PDF下载量:  795
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-27
  • 修回日期:  2009-10-26
  • 刊出日期:  2010-03-05

/

返回文章
返回
Baidu
map