搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚度梯度MoS2的能带漏斗效应及其电荷转移行为研究

左慧玲 申权 李景 刘婧 董健生

引用本文:
Citation:

厚度梯度MoS2的能带漏斗效应及其电荷转移行为研究

左慧玲, 申权, 李景, 刘婧, 董健生

Energy funneling effect and its carrier transfer behavior in MoS2: Layer number gradient effect

Zuo Hui-Ling, Shen Quan, Li Jing, Liu Jing, Dong Jian-Sheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维层状材料的能带漏斗效应为调控电荷转移提供了重要手段.然而,关于能带漏斗的实现及其对电荷转移速率的影响仍缺乏理解.本文通过解析推导和第一性原理计算方法,提出通过构建具有厚度梯度的MoS2实现能带漏斗效应,并分析能带漏斗效应对电荷转移速率的影响.结果表明,MoS2的带隙随层数减少呈单调递增趋势,使得双厚度梯度和三厚度梯度MoS2均可实现能带漏斗效应,电荷会从薄层区域往厚层区域定向传输.此外,不同层数MoS2界面处能级差诱导的驱动力是调控载流子聚集能力的重要因素,在双厚度梯度单层/块体MoS2的电荷转移速率可达4.97×1013s-1.这些结果为设计能带漏斗以及理解能带漏斗效应调控电荷转移行为提供物理基础.
    Energy funneling effect of two-dimensional materials provides an important method to modulate carrier transfer. However, the formation of energy funneling and its influences on the carrier transfer remain relatively uncharacterized. In this work, we investigate the energy funneling induced by the layer number gradient effect in MoS2 through atomic-bond-relaxation approach and first-principles calculations. We find that the bandgap of MoS2 monotonically increasing with decreasing the layer number, resulting in the conduction band minimum (valence band maximum) of thin layer MoS2 is being higher than (lower than) that of thick layer MoS2. Therefore, both dual thickness gradient and triple thickness gradient MoS2 can achieve the energy funneling effect. As a result, the carriers will be directionally transferred from the thin layer region to the thick layer region. According to Marcus theory, the carrier transfer rate is dependent on drive force induced by the energy level difference of different thicknesses of MoS2. For the dual thickness gradient MoS2, when the thickness difference between adjacent layers is the largest, the driving force is the highest, which is 1L/bulk. In addition, owing to the driving force of being smaller than the reorganization energy in dual thickness gradient MoS2, a large driving force corresponds to a high carrier transfer rate, resulting in a higher carrier transfer rate of 1L/bulk compared to other dual thickness gradient systems. For the triple thickness gradient MoS2, there are two consecutive interface energy differences that induce driving forces. However, the carrier transfer rate is exponentially correlated with the driving force. Therefore, the carrier transfer rate of dual thickness gradient MoS2 will be higher than that of the corresponding triple thickness gradient MoS2. Our results demonstrate that the energy funneling effect induced by thickness gradient can realize carrier accumulation in the thick layer region without the need for p-n junctions, which is of great benefit to the collection of photogenerated carrier. Future studies may leverage atomic force microscopy lithography and chemical vapor deposition to engineer thickness-gradient two-dimensional materials with enhanced optoelectronic properties.
  • [1]

    Jiang H, Zhang X K, Chen K L, He X Y, Liu Y H, Yu H H, Gao L, Hong M Y, Wang Y, Zhang Z, Zhang Y 2025 Nat. Mater. 24188

    [2]

    Zhao J J, Liao M Z, Shen C, Wang Q Q, Yang R, Watanabe K, Taniguchi T, Huang Z H, Shi D X, Liu K H, Sun Z P, Feng J, Du L J, Zhang G Y 2025 Phys. Rev. Lett. 134086201

    [3]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105136805

    [4]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9372

    [5]

    Deng W, Wang L S, Liu J N, Yu X L, Chen F X 2021 Acta Phys. Sin. 70217302(in Chinese) [邓文,汪礼胜,刘嘉宁,余雪玲,陈凤翔2021 70217302]

    [6]

    Yang F, Hu Y T, Ou J L, Li Q Y, Xie X X, Han H P, Cai C L, Ruan S C, Xiang B X 2025 ACS Photonics 122128

    [7]

    Feng J, Qian X F, Huang C W and Li J 2012 Nat. Photonics 6866

    [8]

    Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C, Zheng X L 2015 Nat. Commun. 67381

    [9]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin K I 2020 Nat. Photonics 14324

    [10]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S and Kim J 2021 Nano Lett. 2143

    [11]

    Liu J J, Zuo H L, Tan X, Dong J S 2024 Acta Phys. Sin. 73236801(in Chinese) [刘俊杰,左慧玲,谭鑫,董健生2024 73236801]

    [12]

    Sun Z Y, Li Y, Xu B, Chen H, Wang P, Zhao S X, Li Yang, Gao B, Dou X M, Sun B Q, Zhen L, Xu C Y 2021 Adv. Optical Mater. 92100438

    [13]

    Xu N, Pei X D, Qiu L P, Zhan L, Wang P, Shi Y, Li S L 2023 Adv. Mater. 352300618

    [14]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 1094221

    [15]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98263112

    [16]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120080501

    [17]

    Sun C Q 2007 Prog. Solid State Chem. 351

    [18]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114064307

    [19]

    Xiong S, Cao G X 2015 Nanotechnology 26185705

    [20]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 3261

    [21]

    Marcus R A 1956 J. Chem. Phys. 24966

    [22]

    Zhang C, Lian L Y, Yang Z L, Zhang J B, Zhu H M 2019 J. Phys. Chem. Lett. 107665

    [23]

    Kresse G, Hafner J. 1993 Phys. Rev. B 47558

    [24]

    Blöchl P E 1994 Phys. Rev. B 5017953

    [25]

    Kresse G 1996 Phys. Rev. B 5411169

    [26]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85033305

    [27]

    Li T S 2012 Phys. Rev. B 85235407

    [28]

    Kang J, Tongay S, Zhou J, Li J B, Wu J Q 2013 Appl. Phys. Lett. 102012111

    [29]

    Dong J S, Liu J J, Liao W H, Yang X X, He Y, Ouyang G 2024 J. Appl. Phys. 136125302

    [30]

    Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z H 2015 Nano Lett. 158000

    [31]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 123695

    [32]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 126333

    [33]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 144785

    [34]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9676

    [35]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30260

  • [1] 戴硕, 李振, 张超, 郁菁, 赵晓菲, 吴阳, 满宝元. 竖直取向MoS2纳米片复合Ag基底的表面增强拉曼光谱效应及机制.  , doi: 10.7498/aps.74.20241671
    [2] 李滨江, 张禹晨, 李威, 王雪华. 基于MoS2/沸石咪唑酯骨架-67异质结构提高SERS检测性能.  , doi: 10.7498/aps.74.20250410
    [3] 张恒博, 李银辉, 李玮栋, 高飞, 殷荣艳, 梁建国, 赵鹏, 周赟磊, 李朋伟, 边桂彬. PAN/MoS2柔性复合纳米纤维膜的压电传感特性.  , doi: 10.7498/aps.74.20241676
    [4] 王小云, 范汇川, 陈效双, 王林. 基于单层MoS2场效应管中等离子波的太赫兹探测仿真.  , doi: 10.7498/aps.74.20250517
    [5] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应.  , doi: 10.7498/aps.73.20241155
    [6] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢. MoS2/SiO2界面黏附性能的尺寸和温度效应.  , doi: 10.7498/aps.73.20231648
    [7] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能.  , doi: 10.7498/aps.72.20230273
    [8] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响.  , doi: 10.7498/aps.72.20230464
    [9] 王月, 马杰. MoS2中S原子空位形成的非绝热动力学研究.  , doi: 10.7498/aps.72.20230787
    [10] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , doi: 10.7498/aps.71.20220738
    [11] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , doi: 10.7498/aps.71.20211735
    [12] 王奋陶, 樊腾, 张仕雄, 孙真昊, 付雷, 贾伟, 沈波, 唐宁. 单层MoS2薄膜的NaCl双辅助生长方法.  , doi: 10.7498/aps.71.20220273
    [13] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性.  , doi: 10.7498/aps.71.20220132
    [14] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究.  , doi: 10.7498/aps.70.20210750
    [15] 李会华, 张嘉辉, 余森江, 卢晨曦, 李领伟. 柔性基周期性厚度梯度薄膜的应变效应.  , doi: 10.7498/aps.70.20201008
    [16] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , doi: 10.7498/aps.68.20191121
    [17] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , doi: 10.7498/aps.68.20190781
    [18] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元.  , doi: 10.7498/aps.66.247701
    [19] 王沅倩, 何军, 肖思, 杨能安, 陈火章. MoS2溶液的波长选择性光限幅效应研究.  , doi: 10.7498/aps.63.144204
    [20] 刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼. 单层MoS2分子掺杂的第一性原理研究.  , doi: 10.7498/aps.63.117101
计量
  • 文章访问数:  44
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map