搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2/SiO2界面黏附性能的尺寸和温度效应

段聪 刘俊杰 陈永杰 左慧玲 董健生 欧阳钢

引用本文:
Citation:

MoS2/SiO2界面黏附性能的尺寸和温度效应

段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢

Adhesion properties of MoS2/SiO2 interface: Size and temperature effects

Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang
PDF
HTML
导出引用
  • 探索二维材料与其衬底之间的黏附性能对于二维材料的制备、转移以及器件性能的优化至关重要. 本文基于原子键弛豫理论和连续介质力学方法, 系统研究了尺寸和温度对MoS2/SiO2界面黏附性能的影响. 结果表明, 由于表面效应引起的热膨胀系数、晶格应变和杨氏模量的变化, MoS2/SiO2界面黏附能随MoS2厚度的减小而增大, 而热应变使MoS2/SiO2界面黏附能随温度的升高而逐渐降低. 此外, 预测了在不同尺寸和温度下MoS2在SiO2衬底上的“脱落”条件, 系统阐述了MoS2与SiO2衬底之间黏附性能的物理机制, 为基于二维材料电子器件的优化设计提供了理论基础.
    The interface adhesion properties are crucial for designing and fabricating two-dimensional materials and related nanoelectronic and nanomechanical devices. Although some progress of the interface adhesion properties of two-dimensional materials has been made, the underlying mechanism behind the size and temperature dependence of interface adhesion energy and related physical properties from the perspective of atomistic origin remain unclear. In this work, we investigate the effects of size and temperature on the thermal expansion coefficient and Young’s modulus of MoS2 as well as interface adhesion energy of MoS2/SiO2 based on the atomic-bond-relaxation approach and continuum medium mechanics. It is found that the thermal expansion coefficient of monolayer MoS2 is significantly larger than that of its few-layer and bulk counterparts under the condition of ambient temperature due to size effect and its influence on Debye temperature, whereas the thermal expansion coefficient increases with temperature going up and almost tends to a constant as the temperature approaches the Debye temperature. Moreover, the variations of bond identity induced by size effect and temperature effect will change the mechanical properties of MoS2. When the temperature is fixed, the Young’s modulus of MoS2 increases with size decreasing. However, the thermal strain induces the volume expansion, resulting in the Young’s modulus of MoS2 decreasing. Furthermore, the size and temperature dependence of lattice strain, mismatch strain of interface, and Young’s modulus will lead the van der Waals interaction energy and elastic strain energy to change, resulting in the change of interface adhesion energy of MoS2/SiO2. Noticeably, the interface adhesion energy of MoS2/SiO2 gradually increases with MoS2 size decreasing, while the thermal strain induced by temperature causes interface adhesion energy of MoS2/SiO2 to decrease with temperature increasing. In addition, we predict the conditions of the interface separation of MoS2/SiO2 under different sizes and temperatures. Our results demonstrate that increasing both size and temperature can significantly reduce the interface adhesion energy, which is of great benefit in detaching MoS2 film from the substrate. Therefore, the proposed theory not only clarifies the physical mechanism regarding the interface adhesion properties of transition metal dichalcogenides (TMDs) membranes, but also provides an effective way to design TMDs-based nanodevices for desirable applications.
      通信作者: 董健生, jsdong@jsu.edu.cn ; 欧阳钢, gangouy@hunnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12364007)、湖南省教育厅项目(批准号: 21B0502)、国家级大学生创新创业训练项目(批准号: 202210531007)和湖南省大学生创新创业训练项目(批准号: S202310531036)资助的课题.
      Corresponding author: Dong Jian-Sheng, jsdong@jsu.edu.cn ; Ouyang Gang, gangouy@hunnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12364007), the Scientific Research Fund of Education Department of Hunan Province, China (Grant No. 21B0502), the National Students’ Platform for Innovation and Entrepreneurship Training Program (Grant No. 202210531007), and the Students’ Platform for Innovation and Entrepreneurship Training Program of Hunan Province, China (Grant No. S202310531036).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [2]

    李耀华, 董耀勇, 董辉, 郑学军 2022 71 194601Google Scholar

    Li Y H, Dong Y Y, Dong H, Zheng X J 2022 Acta Phys. Sin. 71 194601Google Scholar

    [3]

    Li N, Wang Q Q, Shen C, Zheng W, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [4]

    Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [5]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [6]

    廖俊懿, 吴娟霞, 党春鹤, 谢黎明 2021 70 028201Google Scholar

    Liao J Y, Wu J X, Dang C H, Xie L M 2021 Acta Phys. Sin. 70 028201Google Scholar

    [7]

    Tao Q Y, Wu R X, Li Q Y, Kong L G, Chen Y, Jiang J Y, Lu Z Y, Li B L, Li W Y, Li Z W, Liu L T, Duan X D, Liao L, Liu Y 2021 Nat. Commun. 12 1825Google Scholar

    [8]

    Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z, Kwon S Y 2020 Nat. Electron. 3 207Google Scholar

    [9]

    Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [10]

    Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D, Lu N S, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [11]

    Deng S K, Gao E L, Xu Z P, Berry V 2017 ACS Appl. Mater. Interfaces 9 7812Google Scholar

    [12]

    Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L, J. Bunch S 2017 Nano Lett. 17 5329Google Scholar

    [13]

    Torres J, Zhu Y S, Liu P, Lim S C, Yun M H 2018 Phys. Status Solidi A 215 1700512Google Scholar

    [14]

    Megra Y T, Suk J W 2019 J. Phys. D: Appl. Phys. 52 364002

    [15]

    Calis M, Lloyd D, Boddeti N, Bunch J S 2023 Nano Lett. 23 2607Google Scholar

    [16]

    Ke J, Ying P H, Du Y, Zou B, Sun H R, Zhang J 2022 Phys. Chem. Chem. Phys. 24 15991Google Scholar

    [17]

    Brennan C J, Nguyen J, Yu E T, Lu N S 2015 Adv. Mater. Interfaces 2 1500176Google Scholar

    [18]

    Li Y, Chen P J, Liu H, Peng J, Luo N 2021 J. Appl. Phys. 129 014302Google Scholar

    [19]

    Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L 2019 Nat. Nanotechnol. 14 567Google Scholar

    [20]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar

    [21]

    Rokni H. Lu W 2020 Nat. Commun. 11 5607Google Scholar

    [22]

    Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D 2021 Adv. Mater. Interfaces 8 2100838Google Scholar

    [23]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Khojin A S, Klie R F 2018 Phys. Rev. Lett. 120 055902Google Scholar

    [24]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [25]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [26]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [27]

    He Y, Chen W F, Yu W B, Ouyang G, Yang G W 2013 Sci. Rep. 3 2660Google Scholar

    [28]

    Freund L B, Nix W D 1996 Appl. Phys. Lett. 69 173Google Scholar

    [29]

    Zhu Z M, Zhang A, He Y, Ouyang G, Yang G W 2012 AIP Adv. 2 042185Google Scholar

    [30]

    Gu M X, Zhou Y C, Sun C Q 2008 J. Phys. Chem. B 112 7992

    [31]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110Google Scholar

    [32]

    Aitken Z H, Huang R 2010 J. Appl. Phys. 107 123531Google Scholar

    [33]

    Zhang L, Ouyang G 2018 J. Phys. D: Appl. Phys. 52 025302

    [34]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [35]

    Feldman J L 1976 J. Phys. Chem. Solids 37 1141Google Scholar

    [36]

    Dmitriev V, Torgashev V, Toledano P, Salje E K H 1997 Europhys. Lett. 37 553Google Scholar

    [37]

    Su X Y, Cui H L, Ju W W, Yong Y L, Li X H 2017 Mod. Phys. Lett. B 31 1750229

    [38]

    El-Mahalawy S H, Evans B L 1976 J. Appl. Crystallogr. 9 403Google Scholar

    [39]

    Sevik C 2014 Phys. Rev. B 89 035422Google Scholar

    [40]

    Hu Y W, Zhang F, Titze M, Deng B W, Li H B, Cheng G J 2018 Nanoscale 10 5717Google Scholar

    [41]

    Zhang L N, Lu Z M, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N 2019 Nano Lett. 19 4745Google Scholar

  • 图 1  (a) 附着于SiO2衬底上的MoS2薄膜晶格结构示意图; (b) MoS2热膨胀系数随尺寸和温度的变化规律; MoS2/SiO2 (c) 界面应变和 (d) 总应变与尺寸和温度间的关系

    Fig. 1.  (a) Schematic illustration of a multilayer MoS2 on the SiO2 substrate; (b) thermal expansion coefficient of MoS2 as a function of size and temperature; dependence of (c) in-plane strain of MoS2/SiO2 as well as (d) the total strains in MoS2 membranes on size and temperature.

    图 2  MoS2薄膜的杨氏模量随尺寸和温度的变化规律

    Fig. 2.  The Young’s modulus of MoS2 as a function of thickness and temperature.

    图 3  MoS2/SiO2 (a) vdW相互作用能和(b)应变能随温度和尺寸的变化规律

    Fig. 3.  (a) The interface vdW interaction of MoS2/SiO2 and (b) elastic strain energy of MoS2 as a function of thickness and temperature.

    图 4  (a)—(f) MoS2/SiO2在不同尺寸和温度下总自由能与相对层间距的关系

    Fig. 4.  (a)–(f) Relationship between the total free energy and distance of MoS2/SiO2 under various sizes and temperature.

    图 5  MoS2/SiO2界面粘附能随尺寸和温度的变化规律

    Fig. 5.  Size- and temperature-dependent interface adhesion energy in MoS2/SiO2 system.

    Baidu
  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [2]

    李耀华, 董耀勇, 董辉, 郑学军 2022 71 194601Google Scholar

    Li Y H, Dong Y Y, Dong H, Zheng X J 2022 Acta Phys. Sin. 71 194601Google Scholar

    [3]

    Li N, Wang Q Q, Shen C, Zheng W, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [4]

    Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [5]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [6]

    廖俊懿, 吴娟霞, 党春鹤, 谢黎明 2021 70 028201Google Scholar

    Liao J Y, Wu J X, Dang C H, Xie L M 2021 Acta Phys. Sin. 70 028201Google Scholar

    [7]

    Tao Q Y, Wu R X, Li Q Y, Kong L G, Chen Y, Jiang J Y, Lu Z Y, Li B L, Li W Y, Li Z W, Liu L T, Duan X D, Liao L, Liu Y 2021 Nat. Commun. 12 1825Google Scholar

    [8]

    Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z, Kwon S Y 2020 Nat. Electron. 3 207Google Scholar

    [9]

    Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [10]

    Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D, Lu N S, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [11]

    Deng S K, Gao E L, Xu Z P, Berry V 2017 ACS Appl. Mater. Interfaces 9 7812Google Scholar

    [12]

    Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L, J. Bunch S 2017 Nano Lett. 17 5329Google Scholar

    [13]

    Torres J, Zhu Y S, Liu P, Lim S C, Yun M H 2018 Phys. Status Solidi A 215 1700512Google Scholar

    [14]

    Megra Y T, Suk J W 2019 J. Phys. D: Appl. Phys. 52 364002

    [15]

    Calis M, Lloyd D, Boddeti N, Bunch J S 2023 Nano Lett. 23 2607Google Scholar

    [16]

    Ke J, Ying P H, Du Y, Zou B, Sun H R, Zhang J 2022 Phys. Chem. Chem. Phys. 24 15991Google Scholar

    [17]

    Brennan C J, Nguyen J, Yu E T, Lu N S 2015 Adv. Mater. Interfaces 2 1500176Google Scholar

    [18]

    Li Y, Chen P J, Liu H, Peng J, Luo N 2021 J. Appl. Phys. 129 014302Google Scholar

    [19]

    Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L 2019 Nat. Nanotechnol. 14 567Google Scholar

    [20]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar

    [21]

    Rokni H. Lu W 2020 Nat. Commun. 11 5607Google Scholar

    [22]

    Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D 2021 Adv. Mater. Interfaces 8 2100838Google Scholar

    [23]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Khojin A S, Klie R F 2018 Phys. Rev. Lett. 120 055902Google Scholar

    [24]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [25]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [26]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [27]

    He Y, Chen W F, Yu W B, Ouyang G, Yang G W 2013 Sci. Rep. 3 2660Google Scholar

    [28]

    Freund L B, Nix W D 1996 Appl. Phys. Lett. 69 173Google Scholar

    [29]

    Zhu Z M, Zhang A, He Y, Ouyang G, Yang G W 2012 AIP Adv. 2 042185Google Scholar

    [30]

    Gu M X, Zhou Y C, Sun C Q 2008 J. Phys. Chem. B 112 7992

    [31]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110Google Scholar

    [32]

    Aitken Z H, Huang R 2010 J. Appl. Phys. 107 123531Google Scholar

    [33]

    Zhang L, Ouyang G 2018 J. Phys. D: Appl. Phys. 52 025302

    [34]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [35]

    Feldman J L 1976 J. Phys. Chem. Solids 37 1141Google Scholar

    [36]

    Dmitriev V, Torgashev V, Toledano P, Salje E K H 1997 Europhys. Lett. 37 553Google Scholar

    [37]

    Su X Y, Cui H L, Ju W W, Yong Y L, Li X H 2017 Mod. Phys. Lett. B 31 1750229

    [38]

    El-Mahalawy S H, Evans B L 1976 J. Appl. Crystallogr. 9 403Google Scholar

    [39]

    Sevik C 2014 Phys. Rev. B 89 035422Google Scholar

    [40]

    Hu Y W, Zhang F, Titze M, Deng B W, Li H B, Cheng G J 2018 Nanoscale 10 5717Google Scholar

    [41]

    Zhang L N, Lu Z M, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N 2019 Nano Lett. 19 4745Google Scholar

  • [1] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应.  , 2024, 73(23): . doi: 10.7498/aps.20241155
    [2] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应*.  , 2024, 73(23): 236801. doi: 10.7498/aps.73.20241155
    [3] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能.  , 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [4] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响.  , 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [5] 王月, 马杰. MoS2中S原子空位形成的非绝热动力学研究.  , 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [6] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [7] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [8] 王奋陶, 樊腾, 张仕雄, 孙真昊, 付雷, 贾伟, 沈波, 唐宁. 单层MoS2薄膜的NaCl双辅助生长方法.  , 2022, 71(12): 128104. doi: 10.7498/aps.71.20220273
    [9] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性.  , 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [10] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率.  , 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [11] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长大尺寸MoS2及WS2-MoS2异质结.  , 2021, (): . doi: 10.7498/aps.70.20211735
    [12] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究.  , 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [13] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [14] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [15] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱.  , 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [16] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06.  , 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [17] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元.  , 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [18] 王沅倩, 何军, 肖思, 杨能安, 陈火章. MoS2溶液的波长选择性光限幅效应研究.  , 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [19] 刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼. 单层MoS2分子掺杂的第一性原理研究.  , 2014, 63(11): 117101. doi: 10.7498/aps.63.117101
    [20] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
计量
  • 文章访问数:  2320
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-14
  • 修回日期:  2023-11-25
  • 上网日期:  2023-12-13
  • 刊出日期:  2024-03-05

/

返回文章
返回
Baidu
map