-
大气风场在全球气候研究和空间探测中具有重要作用,多普勒差分干涉仪作为新型被动测风干涉仪,其通过测量大气气辉谱线的多普勒频移引起的相位变化量来反演大气风速,但环境温度波动会导致像面相对于干涉仪发生漂移,从而影响风场测量结果。本文提出一种在光栅上刻蚀周期性刻槽,并对其成像图案进行建模与全局拟合以实现高精度成像漂移检测的方法。对刻槽图像的信噪比及模型参数拟合误差对检测结果的影响进行仿真分析,结果表明,图像信噪比、刻槽数量拟合精度与刻槽宽度拟合精度是影响检测精度的关键因素,而刻槽图像边缘的平滑度的拟合精度对检测结果影响较小。在近红外多普勒差分干涉仪的热稳定实验中,通过对实验所测数据人为施加漂移量,并进行成像漂移监测,结果表明该方法能够实现9.96nm的检测精度,此外,经成像漂移校正后的干涉图相位的局部震荡显著减弱,表明该方法能有效检测与校正成像漂移,显著提升干涉图像相位稳定性,为高精度风速测量提供了可靠保障。Accurate atmospheric wind field measurements are critical for understanding global climate dynamics and facilitating space exploration. Doppler Asymmetric Spatial Heterodyne Interferometers (DASH) measure atmospheric wind speed by detecting the phase changes in interferograms induced by Doppler shifts of airglow emission lines. However, environmental temperature fluctuations and mechanical vibrations often cause imaging plane shifts, introducing phase deviations that degrade measurement accuracy. In this study, we propose a novel global fitting-based imaging shift monitoring method. By etching periodic notches on the diffraction grating surface, the method models and fits the notch patterns formed on the detector plane to achieve precise imaging shift detection and correction. The optimization of notch signal modeling significantly reduces the number of fitting parameters, improving computational efficiency and detection precision. Through extensive simulations, we analyze the impact of SNR and model parameter variations on detection accuracy. Results indicate that when the SNR exceeds 11, the detection uncertainty remains below 6.5 nm. Sensitivity analysis reveals that the detection error stays within acceptable limits when the notch number and notch width variation are controlled within 40% and 0.7%, respectively, while the edge smoothness parameter of notch pattern has negligible influence. To validate the method’s performance, a thermal stability test using a near-infrared DASH prototype was conducted. The experimental results demonstrate a strong correlation between interferogram phase shifts, imaging plane shifts, and environmental temperature variations. After applying the proposed correction method, local phase fluctuations in the interferogram are significantly reduced, improving phase stability. Further, artificially applied imaging shifts were accurately detected with errors consistently below 9.96 nm, confirming the method’s reliability and precision. In conclusion, the proposed method effectively detects and corrects imaging plane shifts caused by temperature variations, enhancing interferogram phase stability and ensuring high-precision wind speed measurements. This approach offers a robust and computationally efficient solution for mitigating imaging shifts in DASH systems, with significant potential for atmospheric wind field measurement and space-based observational applications.
-
Keywords:
- Atmospheric wind field measurement /
- Doppler Asymmetric Spatial Heterodyne Interferometer /
- image plane Shift /
- Global fitting
-
[1] Shepherd G G 2015 Acta Astronaut. 115 206-217
[2] Dhadly M, Sassi F, Emmert J, Drob D, Conde M, Wu Q, Makela J, Budzien S Nicholas A 2023 Astron. Space Sci. 9 1050586
[3] Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601 (in Chinese) [唐远河, 崔 进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 66 30601]
[4] Feng Y T, Fu D, Zhao Z L, Zong W G, Yu T, Sheng Z, Zhu Y J 2023 Acta Opt. Sin. 43 0601011 (in Chinese) [冯玉涛, 傅頔, 赵增亮, 宗位国, 余涛, 盛峥, 朱亚军 2023 光学学报 43 060101]
[5] Zhang S P, Thayer J P, Roble R G 2004 J Atmos Sol-terr Phy 66 105-117
[6] Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Proc. of SPIE 6303 63030T
[7] Englert C R, Babcock D D, Harlander J M 2006 Appl. Opt. 46 7297-307
[8] Stevens M H, Englert C R, Harlander J M, England S L, Marr K D, Brown C M, Immel T J 2018 Space Sci. Rev. 214 4
[9] Harlander J M, Englert C R, Emmert J T, Babcock D D, Roesler F 2010 Opt. Express 18 26430-26440
[10] Xiao Y, Feng Y T, Wen Z Q 2022 Acta Photon. Sin. 51 16 (in Chinese) [肖旸, 冯玉涛, 文镇清 2022 光子学报 51 16]
[11] Harding B J, Chau J L, He M, Englert C R, Harlander J M, Marr K D, Makela J J, Clahsen M, Li G, Ratnam M V, Rao S V B, Wu Y J J, England S L, Immel T J 2021 J. Geophys. Res. Space Physics 126 e2020JA028947
[12] Englert C R, Harlander J M, Brown C M, Makela J J, Marr K D, Immel T J In Fourier Transform Spectroscopy Lake Arrowhead, California United States, March1-4, 2015 FM4A-1
[13] Harlander J M, Englert C R, Brown C M, Marr K D, Miller I J, Zastera V, Bach B W, Mende S B 2017 Space Sci. Rev. 212 601-613
[14] Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D, Miller I 2017 Appl. Opt. 56, 2090-2098
[15] Marr K D, Thayer A S, Englert C R, Harlander J M 2020 Opt. Eng. 59 013102
[16] Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S , Immel T J 2023 Space Sci Rev. 219 27
[17] Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B L 2022 Acta Phys. Sin. 71 084201
[18] Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 104204.
[19] Fu D, Chang C G, Sun J, Li J, Wu K J, Feng Y T, Liu X B 2022 Acta Opt. Sin. 42 18 (in Chinese) [傅頔, 畅晨光, 孙剑, 李娟, 武魁军, 冯玉涛, 刘学斌 2022 光学学报 42 18]
[20] Wei D K, Zhu Y J, Liu J L, Gong Q C, Kaufmann M, Olschewski F, Knieling P, Xu J Y, Koppmann R, Riese M 2020 Opt Express. 28 19887-19900
计量
- 文章访问数: 66
- PDF下载量: 3
- 被引次数: 0