搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氮低温钙离子光钟的宏运动与微运动研究

马子晓 张宝林 黄垚 高克林 管桦

引用本文:
Citation:

液氮低温钙离子光钟的宏运动与微运动研究

马子晓, 张宝林, 黄垚, 高克林, 管桦

Characterization of secular motion and excess micromotion in a Liquid Nitrogen-Cooled Ca+ Ion Optical Clock

MA Zixiao, ZHANG Baolin, HUANG Yao, GAO Kelin, GUAN Hua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在离子光钟实验系统中,离子的运动效应是衡量一套光钟性能的主要指标之一,是目前限制各类不同离子光钟具有更高不确定度的关键影响因素。在第一套液氮低温钙离子光钟的基础上[PhysRevApplied.17.034041(2022)],我们研制了新一套液氮钙离子光钟的物理系统,并对其离子囚禁装置进行了较大改进,主要包括以下两方面:通过引入射频电压的主动稳定装置,将液氮低温钙离子光钟的径向宏运动频率的长期漂移抑制到了小于$1\,\mathrm{kHz}$水平;通过改进离子阱鞍点位置剩余电压的补偿方案,进一步将液氮低温钙离子光钟中附加微运动造成的频移抑制至$<1.0\times10^{-19}$。这些改进有助于提升离子的冷却效率与提高离子温度的评估精度。通过对宏运动红蓝边带的测量,我们精确评估了Doppler冷却后离子的振动平均声子数,对应的离子温度为0.78 mK,接近Doppler冷却极限。此外,稳定的宏运动频率为下一步在液氮低温钙离子光钟上实施三维边带冷却创造了良好条件,也为推动液氮低温钙离子光钟的系统不确定度进一步降低至$10^{-19}$量级打下了基础。
    In ion optical clock systems, the motional effects of trapped ions are critical factors in determining clock performance and currently represent key limitations in achieving lower uncertainty across different ion-based optical clocks. Building on the first liquid nitrogen-cooled Ca$^+$ ion optical clock [PhysRevApplied.17.034041], we have developed a new physical system for a second Ca$^+$ ion optical clock and made significant improvements to its ion trapping apparatus. These improvements primarily focus on two aspects: First, we designed and implemented an active stabilization system for the RF voltage, which stabilizes the induced RF signal on the compensation electrodes by adjusting the RF source amplitude in real time. This approach effectively suppressed long-term drifts in the radial secular motion frequencies to less than 1 kHz, achieving stabilized values of $\omega_x = 2\pi \times 3.522(2)\,\mathrm{MHz}$ and $\omega_y = 2\pi \times 3.386(2)\,\mathrm{MHz}$. The induced RF signal was stabilized at 59 121.43(12) µV, demonstrating the high precision of the stabilization system. Second, we optimized the application of compensation voltages by integrating the vertical compensation electrodes directly onto the ion trap structure. This refinement enabled us to suppress excess micromotion in all three mutually orthogonal directions to an even lower level. With the RF trapping frequency tuned close to the magic trapping condition of the clock transition, we further evaluated the excess micromotion-induced frequency shift in the optical clock to be $2(1) \times 10^{-19}$. To quantitatively assess the secular motion of the trapped ion, we performed sideband spectroscopy on the radial and axial motional modes, measuring both red and blue sidebands. From these measurements, we accurately determined the mean phonon number in the three motional modes after Doppler cooling, corresponding to an average ion temperature of $0.78(39)\,\mathrm{mK}$, which is close to the Doppler cooling limit. The corresponding second-order Doppler shift was evaluated to be $-(2.71 \pm 1.36) \times 10^{-18}$. The long-term stability of the radial secular motion frequency provides favorable conditions for implementing three-dimensional sideband cooling in future experiments, which will further reduce the second-order Doppler shift. These advancements not only enhance the overall stability of the optical clock but also lay the foundation for reducing its systematic uncertainty to the $10^{-19}$ level.
  • [1]

    Chen J 2009 Chinese Science Bulletin 54 348

    [2]

    Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E, Hanssen J, Malimon A, Ashby N 2024 Metrologia 61 012001

    [3]

    Riehle F, Gill P, Arias F, Robertsson L 2018 Metrologia 55 188

    [4]

    Gill P 2016 Journal of Physics: Conference Series 723 012053

    [5]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nature Photonics 10 662

    [6]

    Schuldt T, Gohlke M, Oswald M, Wüst J, Blomberg T, Döringshoff K, Bawamia A, Wicht A, Lezius M, Voss K, Krutzik M, Herrmann S, Kovalchuk E, Peters A, Braxmaier C 2021 GPS Solutions 25 83

    [7]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nature Photonics 14 411

    [8]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204

    [9]

    Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O, Denker H 2018 Reports on Progress in Physics 81 064401

    [10]

    Gilmore K A, Affolter M, Lewis-Swan R J, Barberena D, Jordan E, Rey A M, Bollinger J J 2021 Science 373 673

    [11]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802

    [12]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [13]

    Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, Huntemann N 2023 Phys. Rev. Lett. 130 253001

    [14]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043

    [15]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87

    [16]

    Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024 Phys. Rev. Lett. 133 023401

    [17]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017

    [18]

    Li J, Cui X Y, Jia Z P, Kong D Q, Yu H W, Zhu X Q, Liu X Y, Wang D Z, Zhang X, Huang X Y, Zhu M Y, Yang Y M, Hu Y, Liu X P, Zhai X M, Liu P, Jiang X, Xu P, Dai H N, Chen Y A, Pan J W 2024 Metrologia 61 015006

    [19]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nature Photonics 9 185

    [20]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201

    [21]

    Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M, Gao K 2022 Phys. Rev. Appl. 17 034041

    [22]

    Tofful A, Baynham C F A, Curtis E A, Parsons A O, Robertson B I, Schioppo M, Tunesi J, Margolis H S, Hendricks R J, Whale J, Thompson R C, Godun R M 2024 Metrologia 61 045001

    [23]

    Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C, Fang Z J 2022 Chinese Physics Letters 39 080601

    [24]

    Zhiqiang Z, Arnold K J, Kaewuam R, Barrett M D 2023 Science Advances 9 eadg1971

    [25]

    Lu X, Guo F, Wang Y, Xu Q, Zhou C, Xia J, Wu W, Chang H 2023 Metrologia 60 015008

    [26]

    Arnold K J, Kaewuam R, Roy A, Tan T R, Barrett M D 2018 Nature Communications 9 1650

    [27]

    Dubé P, Madej A A, Tibbo M, Bernard J E 2014 Phys. Rev. Lett. 112 173002

    [28]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401

    [29]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502

    [30]

    Angstmann E J, Dzuba V A, Flambaum V V 2006 Phys. Rev. Lett. 97 040802

    [31]

    Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H, Gao K 2023 Phys. Rev. Appl. 19 064004

    [32]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004

    [33]

    Doležal M, Balling P, Nisbet-Jones P B R, King S A, Jones J M, Klein H A, Gill P, Lindvall T, Wallin A E, Merimaa M, Tamm C, Sanner C, Huntemann N, Scharnhorst N, Leroux I D, Schmidt P O, Burgermeister T, Mehlstäubler T E, Peik E 2015 Metrologia 52 842

    [34]

    Zeng M, Huang Y, Zhang B, Ma Z, Hao Y, Hu R, Zhang H, Guan H, Gao K 2023 Chinese Physics B 32 113701

    [35]

    Berkeland D J, Miller J D, Bergquist J C, Itano W M, Wineland D J 1998 Journal of Applied Physics 83 5025

    [36]

    Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R, Hume D B 2017 Phys. Rev. Lett. 118 053002

    [37]

    Keller J, Partner H L, Burgermeister T, Mehlstäubler T E 2015 Journal of Applied Physics 118 104501

    [38]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 Journal of research of the National Institute of Standards and Technology 103 259

    [39]

    James D F V 1998 Applied Physics B 66 181

    [40]

    Zhang B, Huang Y, Hao Y, Zhang H, Zeng M, Guan H, Gao K 2020 Journal of Applied Physics 128 143105

    [41]

    Zhang B, Huang Y, Zhang H, Hao Y, Zeng M, Guan H, Gao K 2020 Chinese Physics B 29 074209

    [42]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806

    [43]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [44]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

  • [1] 陈思, 张海洋, 靳发宏, 汪林, 赵长明. 运动目标的多维度微运动特征提取研究.  , doi: 10.7498/aps.73.20231691
    [2] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展.  , doi: 10.7498/aps.73.20241367
    [3] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟.  , doi: 10.7498/aps.72.20221674
    [4] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , doi: 10.7498/aps.71.20220151
    [5] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性.  , doi: 10.7498/aps.68.20190427
    [6] 魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航. 微尺度空泡溃灭驱使微球运动的机理研究.  , doi: 10.7498/aps.66.164702
    [7] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , doi: 10.7498/aps.65.037701
    [8] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究.  , doi: 10.7498/aps.64.073301
    [9] 阳志强, 吴振森, 张耿, 巩蕾. 旋转粗糙目标微运动特征识别技术.  , doi: 10.7498/aps.63.210301
    [10] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究.  , doi: 10.7498/aps.62.187302
    [11] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究.  , doi: 10.7498/aps.62.044106
    [12] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟.  , doi: 10.7498/aps.61.034701
    [13] 王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波. 脉冲强磁场高频电子自旋共振装置的研制.  , doi: 10.7498/aps.61.107601
    [14] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用.  , doi: 10.7498/aps.61.107801
    [15] 胡艺, 葛云, 章东, 郑海荣, 龚秀芬. 调频超声脉冲驱动微气泡运动偏移的研究.  , doi: 10.7498/aps.58.4746
    [16] 丁彩英, 谭 磊, 刘利伟, 徐 岩. 量子微腔中运动原子的辐射压力.  , doi: 10.7498/aps.57.5612
    [17] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究.  , doi: 10.7498/aps.57.3001
    [18] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究.  , doi: 10.7498/aps.54.5344
    [19] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应.  , doi: 10.7498/aps.50.2434
    [20] 陶云. 低温下铁磁和反铁磁体系的运动学相互作用.  , doi: 10.7498/aps.22.449
计量
  • 文章访问数:  108
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-27

/

返回文章
返回
Baidu
map