搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双声光调制的高稳定双频激光

贺子洋 安炳南 王韬 赵晓康 刘向嵩 陈力荣 王雅君

引用本文:
Citation:

基于双声光调制的高稳定双频激光

贺子洋, 安炳南, 王韬, 赵晓康, 刘向嵩, 陈力荣, 王雅君

High-stability dual-frequency laser based on dual acousto-optic modulation

HE Ziyang, AN Bingnan, WANG Tao, ZHAO Xiaokang, LIU Xiangsong, CHEN Lirong, WANG Yajun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高稳定双频激光光源是实现国家超精密测量能力的关键技术,也是支撑高端装备制造质量的基石。本文基于双声光调制方案搭建了高稳定双频激光光源及其频差稳定性评估系统。通过研究双声光调制生成双频激光的机理,逐级构建了频差稳定性劣化模型,并针对性地进行了技术改进。研究表明,双频激光光源的频率稳定性与双频频差稳定性均会影响外差干涉测量的精度,而双频频差稳定性由射频信号稳定性和功率放大器非线性失真决定。本文通过设计高阶谐波滤除技术和基于铷钟的高稳定射频发生器,将频差稳定性优化至9×10-11@1s,6×10-10@1000s,双频频差稳定性对外差干涉测量精度的影响降低至亚飞米量级。此时,双频激光光源的频差稳定性指标充分满足皮米级激光干涉测量应用需求。结合当前最先进的超稳腔稳频技术,我们的高稳定双频激光光源可以支持皮米甚至飞米级精度的外差干涉测量,在超精密测量等领域具有重要应用前景。
    A high-stability dual-frequency laser source is a key technology for achieving national ultra-precision measurement capabilities and also serves as the foundation for supporting the quality of high-end equipment manufacturing. This paper builds a high-stability dual-frequency laser source and its frequency difference stability evaluation system based on a double acousto-optic modulation scheme. By researching the mechanism of generating dual-frequency laser based on double acousto-optic modulation, a degradation model of frequency difference stability was gradually constructed, with targeted technical improvements implemented. The study shows that the frequency stability of the dual-frequency laser source and the stability of the frequency difference both affect the accuracy of heterodyne interference measurement. The frequency difference stability is determined by factors such as the stability of RF signal and the nonlinear distortion of the power amplifier. This study first optimizes the frequency difference stability to 7.5×10-10@1s and 1.2×10-9@1000s by designing a high-order harmonic filtering technique. Then, the DG 4202 RF generator is replaced with a rubidium-clock-based high-stability RF signal generator, further optimizing the frequency difference stability to 9×10-11@1s and 6×10-10@1000s. The impact of dual-frequency frequency difference stability on heterodyne interference measurement accuracy is reduced to the sub-femtometer level. And the frequency difference stability of the dual-frequency laser source fully meet the application requirements for picometer-level laser interference measurement. Combined with the most advanced frequency stabilization technology using ultra-stable cavity, our high-stability dual-frequency laser source can support heterodyne interference measurement with picometer or even femtometer-level accuracy, demonstrating significant application potential in fields such as ultra-precision measurements.
  • [1]

    Suo R, Fan Z J, Li Y, Zhang S L 2004LASER& INFRARED 34 251253(in Chinese) [所睿,范志军,李岩,张书练2004激光与红外34 251253]

    [2]

    Karsten D, Albrecht R 2003Class. Quantum Grav. 20 S1

    [3]

    Hough J, Robertson D, Ward H, McNamara P, LISA Science Team 2003Adv. Space Res. 32 12471250

    [4]

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022Acta Phys. Sin. 71212219(in Chinese) [李庆回,李卫,孙瑜,王雅君,田龙,陈力荣,张鹏飞,郑耀辉2022 71 212219]

    [5]

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023Acta Phys. Sin. 72 240246(in Chinese) [王在渊,王洁浩,李宇航,柳强2023 72 240246]

    [6]

    Wang J, Qi K, Wang S, Gao R, Li P, Yang R, Liu H, Luo Z 2024Sci. Sin. Phys. Mech. Astron. 54 109127(in Chinese) [王娟,齐克奇,王少鑫,高瑞弘,李磐,杨然,刘河山,罗子人2024中国科学:物理学力学天文学54 109127]

    [7]

    Li Z K, Zhang Z H, Lu Y F, Bai Y, Xu J X, Hu P C, Liu Y M, You Q, Wang D W, He Q, Tan J B 2018Acta Phys. Sin. 67 160601(in Chinese) [李正坤,张钟华,鲁云峰,白洋,许金鑫,胡鹏程,刘永猛,由强,王大伟,贺青,谭久彬2018 67 160601]

    [8]

    Le T R, Mu H L, Xu X, Tan Y D, Wei H Y, Li Y 2023Acta Phys. Sin. 72 149501(in Chinese) [乐陶然,穆衡霖,徐欣,谈宜东,尉昊赟,李岩2023 72 149501]

    [9]

    Chen H, Li L X, Li R G, Yu G D, Chen Q 2023 Electron. 12 4960.

    [10]

    Cao L B 2008Infrared Laser Eng. 37 200202(in Chinese) [曹利波2008红外与激光工程37 200202]

    [11]

    Li L, Yuan L, Wang L, Zhang R, Wu Y P, Wang X Y 2021Chin. J. Aeronaut. 34 191209

    [12]

    Lee A Y, Yu J W, Kahn P B, Stoller R L 2002IEEE Trans. Aerosp. Electron. Syst.38 502-514

    [13]

    Andrew Y, Marco P, Gian B P, Ulrich K, Jens F, Petr K, Antti L, Santeri S, Ramiz H, Mehmet C, Michael M, Anton N 2009 Nanotrace: the investigation of non-linearity in optical interferometers using X-ray interferometry

    [14]

    State Council of the People's Republic of China, Development Plan for Metrology (2013–2020) 2013 Gazette of the State Council of the People's Republic of China9 613(in Chinese)[中华人民共和国国务院,计量发展规划(2013–2020) 2013中华人民共和国国务院公报9 613]

    [15]

    Dai Y, Zhang W X, Kong X X, Shen Y Y, Xu H, Zhang X Q 2024Acta Phys. Sin.73 084206(in Chinese)[戴玉,张文喜,孔新新,沈杨翊,徐豪,张晓强2024 73 084206]

    [16]

    Yang H X, Fu H J, Hu P C, Yang R T, Xing X, Yu L, Chang D, Tan J B 2022Laser Optoelectron. Prog. 59 305319(in Chinese) [杨宏兴,付海金,胡鹏程,杨睿韬,邢旭,于亮,常笛,谭久彬2022激光与光电子学进展59 305319]

    [17]

    Qi C Y 2019 M.S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [祁春雨2019硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [18]

    Zhang S L 2023Acta Opt. Sin. 43 189198(in Chinese) [张书练2023光学学报43 189198]

    [19]

    Cheng L R, Wang T, An B N, He Z Y, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2026J. Quantum Opt.32 030201(in Chinese)陈力荣,王韬,安炳南,贺子洋,赵琴,武延鹏,李林,王雅君,郑耀辉2026量子光学学报32 030201

    [20]

    Xu G J, Jiao D D, Zhang L B, Gao J, Liu J, Fan L, Chen L, Dong R F, Liu T, Zhang S G 2021J. Time Freq. 44 244254(in Chinese) [许冠军,焦东东,张林波,高静,刘军,范乐,陈龙,董瑞芳,刘涛,张首刚2021时间频率学报44 244254]

    [21]

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zhen Y H 2025J. Quantum Opt. 31 040201(in Chinese) [刘骏杨,韩逸凡,陈力荣,赵琴,武延鹏,李林,王雅君,郑耀辉2025量子光学学报31 040201]

    [22]

    Cheng J D, Li T, Zhou C Y, Wang L K, Fang S, Sun G W, Geng J X, Hong Y, Hou X, Chen W B. 2024Chin. J. Lasers 51 350362(in Chinese) [陈迪俊,李唐,周翠芸,汪凌珂,方苏,孙广伟,耿建新,洪毅,侯霞,陈卫标2024中国激光51 350362]

    [23]

    D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr 2017Phys. Rev. Lett. 118 263202

    [24]

    Yang H X, Yin Z X, Yang R T, Hu P C, Li J, Tan J B 2020Sensors 20 1083

    [25]

    Köchert P, Weichert C, Flügge J, Wurmus J, Manske E 2014Proceedings of the 58th ILMENAU SCIENTIFIC COLLOQUIUM September 8—12,2014 p068

    [26]

    AA Opto-Electronic,“Do you know Acousto-optics ?” rue de Versailles F-78470 Saint-Rémy-lès-Chevreuse Tél.: 33(0)130528717- Fax: 33(0)130527803- www.a-a.fr

    [27]

    Kazimierczuk, Marian K 2015 RF Power Amplifiers (Hoboken: wiley) pp65-166

    [28]

    Li R X, Jiao N J, An B N, Wang Y J, Li W, Chen L R, Tian L, Zheng Y H 2024Opt. Laser Technol. 174 110617

    [29]

    Jiao N J, Li R X, An B N, W J W, Chen L R, Wang Y J, Zheng Y H 2024Opt. Lett.49, 35683571

  • [1] 戴玉, 张文喜, 孔新新, 沈杨翊, 徐豪, 张晓强. 基于低频外差干涉的光纤环形器重合度检测.  , doi: 10.7498/aps.73.20231941
    [2] 徐靖翔, 孔明, 许新科. 基于旋转不变技术信号参数估计的激光扫频干涉测量方法.  , doi: 10.7498/aps.70.20201135
    [3] 伍洲, 张文喜, 相里斌, 李杨, 孔新新. 频差偏差对全视场外差测量精度的影响.  , doi: 10.7498/aps.67.20171837
    [4] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法.  , doi: 10.7498/aps.65.140601
    [5] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法.  , doi: 10.7498/aps.65.209501
    [6] 朱守深, 张书练, 刘维新, 牛海莎. HeNe双频激光器频差的激光内雕赋值法.  , doi: 10.7498/aps.63.064201
    [7] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , doi: 10.7498/aps.62.184206
    [8] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究.  , doi: 10.7498/aps.62.204205
    [9] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法.  , doi: 10.7498/aps.61.034207
    [10] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法.  , doi: 10.7498/aps.61.044207
    [11] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量.  , doi: 10.7498/aps.61.180601
    [12] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响.  , doi: 10.7498/aps.58.8326
    [13] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法.  , doi: 10.7498/aps.58.5473
    [14] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性.  , doi: 10.7498/aps.58.3966
    [15] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移.  , doi: 10.7498/aps.56.2756
    [16] 毛 威, 张书练. 基于双折射双频激光器中的调频回馈位移测量研究.  , doi: 10.7498/aps.56.1409
    [17] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究.  , doi: 10.7498/aps.56.2663
    [18] 毛 威, 张书练, 张连清, 朱 钧, 李 岩. 双频激光回馈位移测量研究.  , doi: 10.7498/aps.55.4704
    [19] 张光寅, 张潮波, 丁欣, 宋峰, 郭曙光, 孟凡臻. 固体激光腔动力学稳定性的调控.  , doi: 10.7498/aps.51.253
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热.  , doi: 10.7498/aps.26.133
计量
  • 文章访问数:  172
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-27

/

返回文章
返回
Baidu
map