搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据挖掘技术的稀土磁性材料研究进展

刘丹 李渊 孙若瑄 漆星 沈保根

引用本文:
Citation:

基于数据挖掘技术的稀土磁性材料研究进展

刘丹, 李渊, 孙若瑄, 漆星, 沈保根

Research progress of rare earth magnetic materials based on machine learning

Dan Liu, Yuan Li, RuoXuan Sun, Qi Xing, Baogen Shen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 稀土元素的原子结构特殊,具有内层未成对4f轨道电子多、原子磁矩高、自旋轨道耦合作用强的性质,故其电子能级极为丰富,易形成多种价态、多种配位的化合物,通常表现出特殊的磁学性质和丰富的磁畴结构,成为高新技术产业发展的关键材料。这类材料中复杂的磁结构形式、多样的磁耦合类型及多种直接或间接的磁交换作用,为开发新型功能器件提供便利的同时,也对基础研究提出了严峻挑战。随着数据挖掘技术的快速发展,大数据和人工智能的出现给研究人员提供了一个新的选择,可以高效地分析大量实验和计算数据,从而加速稀土磁性材料的研究与开发。本文围绕稀土永磁材料、稀土磁致冷材料、稀土磁致伸缩材料等,详细阐述了数据挖掘技术在其性能预测、成分与工艺优化、微观结构分析等方面的应用进展,深入探讨了当前面临的挑战,并对未来发展趋势进行展望,为推动数据挖掘技术与稀土磁性材料研究的深度融合提供理论基础。
    Rare-earth elements possess unique atomic structures characterized by multiple unpaired 4f orbital electrons in inner shells, high atomic magnetic moments, and strong spin-orbit coupling. These attributes endow them with rich electronic energy levels, enabling the formation of compounds with diverse valence states and coordination environments. Consequently, rare-earth materials often exhibit exceptional magnetic properties and complex magnetic domain structures, making them critical for high-tech industrial development. The intricate magnetic configurations, diverse types of magnetic coupling, and direct/indirect magnetic exchange interactions in these materials not only facilitate the development of novel functional devices but also pose significant challenges to fundamental research. With the rapid advancement of data mining techniques, the emergence of big data and artificial intelligence has provided researchers with a new approach to efficiently analyze vast experimental and computational datasets, thereby accelerating the exploration and development of rare-earth magnetic materials. This paper focuses on rare-earth permanent magnetic materials, rare-earth magnetocaloric materials, and rare-earth magnetostrictive materials, detailing the application progress of data mining techniques in property prediction, composition and process optimization, and microstructural analysis. It also delves into current challenges and future trends, aiming to provide a theoretical foundation for deepening the integration of data mining technologies with rare-earth magnetic material research.
  • [1]

    中华人民共和国国务院2024-06-29 稀土管理条例https://www.gov.cn/zhengce/zhengceku/202406/content_6960153.htm

    [2]

    中华人民共和国国务院 2023-12-26中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要https://www.gov.cn/zhuanti/shisiwuguihua/sdb.htm

    [3]

    Tai D Q, Li B, Xue H Y, Zheng T, Wu J G 2024 Acta Mater. 262 119411

    [4]

    Swamynadhan M J, O'Hara A, Ghosh S, Pantelides S T 2024 Adv. Funct. Mater. 34 2400195

    [5]

    Ding S L, Kang M G, Legrand W, Gambardella P 2024 Phys. Rev. Lett. 132 236702

    [6]

    Deng X W, Wu L Y, Zhao R, Wang J O, Zhao L N 2024 Acta Phys. Sin. 73 210701(邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜 2024 73 210701)

    [7]

    Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53

    [8]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Nature 559 547

    [9]

    Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201(张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 73 230201)

    [10]

    Wang Z, Sun Z H, Yin H, Liu X H, Wang J L, Zhao H T, Pang C H, Wu T, Li S Z, Yin Z Y, Yu X F 2022 Adv. Mater. 34 2104113

    [11]

    Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lyu D S 2019 Acta Phys. Sin. 68 130701(彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701)

    [12]

    Li R 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) [李锐 2018博士学位论文(北京:中国科学院大学)]

    [13]

    Kovacs A, Fischbacher J, Oezelt H, Kornell A, Ali Q, Gusenbauer M, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Hong Y, Grenier S, Devillers T, Dempsey N M, Fukushima T, Akai H, Kawashima N, Miyake T, Schrefl T 2023 Front. Mater. 9 1094055

    [14]

    Hosokawa H, Calvert E L, Shimojima K 2021 J. Magn. Magn. Mater. 526 167651

    [15]

    Guo K, Lu H, Zhao Z, Tang F W, Wang H B, Song X Y 2022 Comp. Mater. Sci. 205 111232

    [16]

    Wen J T, Hu H G, An J S, Han T, Hu J F 2024 J. Supercond. Nov. Magn. 37 1443

    [17]

    Liu R S, Wang L C, Xu Z Y, Qin C Y, Li Z Y, Yu X, Liu D, Gong H Y, Zhao T Y, Sun J R, Hu F X, Shen B G 2022 Mater. Today Commun. 32 103996

    [18]

    Nguyen D N, Pham T L, Nguyen V C, Kino H, Miyake T, Dam H C. 2019 J. Phys. Mater. 2 034009

    [19]

    Xu G J, Cheng F, Lu H, Hou C, Song X Y 2024 Acta Mater. 274 120026

    [20]

    Halder A, Rom S, Ghosh A, Dasgupta T S 2020 Phys. Rev. Appl. 14 034024

    [21]

    Lambard G, Sasakib T T, Sodeyama K, Ohkubo T, Hono K 2022 Scripta Mater. 209 114341

    [22]

    Lu S F, Liu Y L, Yin Q S, Chen J F, Wu J, Li J, Zhan P J, Chen Z C 2024 J. Eur. Ceram. Soc. 44 5677

    [23]

    Choudhary A K, Grubesa T, Jansche A, Bernthaler T, Goll D, Schneider G 2024 Acta Mater. 264 119563

    [24]

    Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53

    [25]

    Kusne A G, Gao T, Mehta A, Ke L Q, Nguyen M C, Ho K M, Antropov V, Wang C Z, Kramer M J, Long C, Takeuchi I 2014 Sci. Rep. 4 63

    [26]

    Nieves P, Arapan S, Hadjipanayis G C, Niarchos D, Barandiaran J M, Cuesta-López S 2016 Phys. Status Solidi C 13 942

    [27]

    Xia W Y, Sakurai M, Balasubramanian B, Liao T, Wang R H, Zhang C, Sun H J, Ho K M, Chelikowsky J R, Sellmyer D J, Wang C Z 2022 Proc. Natl. Acad. Sci. 119 2204485119

    [28]

    Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chinese Phys. B 27 067503

    [29]

    Zhang B. 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) [张博 2018博士学位论文(北京:中国科学院大学)]

    [30]

    Ucar H, Paudyal D, Choudhary K 2022 Comp. Mater. Sci. 209 111414

    [31]

    Alqahtani A 2024 Sustainability 16 1542

    [32]

    Shamsah S M I 2024 Int. J. Refrig. 168 122

    [33]

    Zhao Q, Yan K L, Cui Z, Wen B Y, Xue F, Li J T, Guo J N, Xu A, Qiao K M, Ye R C, Long Y, Zhang D W, Luo H, Taskaev S, Zhang H 2023 Corros. Sci. 216 111115

    [34]

    Gong J H, Zhang Z M, Zhang C L, Hu P Q, Zhou C, Wang D H, Yang S 2024 Rare Met. 43 2251

    [35]

    Hu P Q, Zhou C, Zhang R S, Ding S D, Guo Y J, Wang B, Xue D Z, Ma Y Z, Dai Z Y, Zhang Y, Tian F H, Yang S 2025 Mater. Design 252 113799

    [36]

    Foggiatto A L, Mizutori Y, Yamazaki T, Sato S, Masuzawa K, Nagaoka R, Taniwaki M, Fujieda S, Suzuki S, Ishiyama K, Fukuda T, Igarashi Y, Mitsumata C, Kotsugi M 2023 IEEE T. Magn. 59 1

    [37]

    Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202(黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202)

    [38]

    Liu D, Liu Z X, Zhang J E, Yin Y N, Xi J F, Wang L C, Xiong J F, Zhang M, Zhao T Y, Jin J Y, Sun J R, Hu F X, Shen J, Shen B G 2023 Classification and prediction of skyrmion material based on machine learning. Research 6 0082

    [39]

    Liu D, Song J H, Liu Z X, Zhang J E, Chen W Q, Yin Y N, Xi J F, Zheng X Q, Hao J Z, Zhao T Y, Hu F X, Sun J R, Shen B G 2025 Machine learning study on magnetic structure of rare earth based magnetic materials. Mater. Design 251 113710.

    [40]

    Li X, Shek C H, Liaw P K, Shan G C 2024 Machine learning studies for magnetic compositionally complex alloys: A critical review. Prog. Mater. Sci. 146 101332.

  • [1] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别.  , doi: 10.7498/aps.74.20241458
    [2] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为.  , doi: 10.7498/aps.74.20241581
    [3] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , doi: 10.7498/aps.74.20240999
    [4] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化.  , doi: 10.7498/aps.74.20241624
    [5] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能.  , doi: 10.7498/aps.74.20241379
    [6] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性.  , doi: 10.7498/aps.74.20250362
    [7] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , doi: 10.7498/aps.73.20240747
    [8] 张嘉晖. 蛋白质计算中的机器学习.  , doi: 10.7498/aps.73.20231618
    [9] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测.  , doi: 10.7498/aps.73.20240284
    [10] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测.  , doi: 10.7498/aps.73.20241278
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , doi: 10.7498/aps.72.20231624
    [13] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测.  , doi: 10.7498/aps.72.20230382
    [14] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能.  , doi: 10.7498/aps.72.20221953
    [15] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度.  , doi: 10.7498/aps.72.20230646
    [16] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , doi: 10.7498/aps.71.20211625
    [17] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , doi: 10.7498/aps.70.20210831
    [18] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , doi: 10.7498/aps.70.20210879
    [19] 郭淑慧, 吕欣. 网络直播平台数据挖掘与行为分析综述.  , doi: 10.7498/aps.69.20191776
    [20] 段焰辉, 吴文华, 范召林, 罗佳奇. 基于本征正交分解的气动优化设计外形数据挖掘.  , doi: 10.7498/aps.66.220203
计量
  • 文章访问数:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-29

/

返回文章
返回
Baidu
map