-
为解决小孔点衍射干涉仪构建中, 显微物镜汇聚光斑与衍射小孔之间对准误差对波前误差、衍射强度、干涉条纹对比度产生影响, 而导致实际测量精度降低的问题, 本文提出一种衍射小孔可视对准方法, 借助电荷耦合器件和分光棱镜在小孔衍射前端搭建辅助对准光路, 通过对小孔衍射板反射图像进行采集及处理来监测小孔对准状态并计算对准误差. 文中设计了可视精密对准光路方案, 仿真分析了平移、倾斜以及离焦三种典型对准偏差下对准图像的视觉表现, 构建了对准图像与对准误差之间物像关系数学模型, 研究了对准图像处理算法. 经原理性验证实验表明, 本文所提辅助光路对准方法和对准图像处理算法可行, 对准精度可达到0.05 μm. 研究成果有利于提高点衍射干涉仪的对准效率和精度, 可为实用点衍射干涉仪开发奠定一定的技术基础.In the construction of the pinhole point diffraction interferometer, the alignment error between the convergent spot of the microscopic objective lens and the diffraction hole in the front end of the pinhole diffraction will lead to problems such as diffraction wavefront error, diffraction intensity reduction, and interference fringe contrast reduction, which will affect the actual measurement accuracy. In order to solve the problem of inaccurate alignment between the convergent spot of the microscopic objective lens and the diffraction hole, a diffraction hole visual alignment method based on the auxiliary optical path is proposed in this work. An auxiliary alignment optical path is built at the front end of the pinhole diffraction, and the beam reflected by the pinhole diffraction plate is mainly reflected by the beam splitter prism, and then received by a charge coupled device (CCD). By collecting and processing the spot image reflected by the small hole diffraction plate, the alignment state of the small hole is monitored and the alignment error is calculated. In this work, a visual-precision optical path alignment scheme is designed, and the visual performance of the alignment image under three typical alignment deviations of translation, tilt and defocus is simulated and analyzed. The mathematical model of the object-image relationship between the alignment image and the alignment error is constructed, and the alignment image error measurement and processing algorithm is studied. The experimental results show that the auxiliary optical path alignment method and the alignment image processing algorithm proposed in this work are feasible, and the alignment accuracy can reach 0.05 μm. The research results are helpful in improving the alignment efficiency and accuracy of point diffraction interferometer, and can lay a certain technical foundation for the development of practical point diffraction interferometer.
-
Keywords:
- point diffraction interferometer /
- diffraction pinhole /
- visual alignment /
- alignment error
-
表 1 仿真图像中心像素坐标
Table 1. Simulation image center pixel coordinates.
表 2 仿真图像中心提取像素坐标
Table 2. Pixel coordinates extracted from the center of the simulation image.
表 3 实验图像中心点像素坐标
Table 3. Pixel coordinates of the center point of the experimental image.
表 4 实验图像中心点相机靶面坐标
Table 4. Experimental image center point camera target surface coordinates.
-
[1] Patrick P N, Kenneth A G, Sang H L 1999 Appl. Opt. 38 7252
Google Scholar
[2] 王同盟, 高芬, 李兵 2024 光学精密工程 32 208
Google Scholar
Wang T M, Gao F, Li B 2024 Opt. Precis. Eng. 32 208
Google Scholar
[3] 张金鹏, 高芬, 李兵 2022 光子学报 51 0412004
Google Scholar
Zhang J P, Gao F, Li B 2022 Acta Photonica Sin. 51 0412004
Google Scholar
[4] Shan M G, Yin Z Y, Zhong Z, Liu B, Yu L, Liu L 2024 Phys. Scr. 99 065118
Google Scholar
[5] Zheng D H, Ma Z Y, Zhang Z, Hu C H 2023 Appl. Opt. 62 745
Google Scholar
[6] Yang X, Guo R H, Tang X, Yin Z Y, Liu C X, Li J X 2021 Appl. Opt. 60 10988
Google Scholar
[7] 毛姗姗, 李艳秋, 刘克, 刘丽辉, 郑猛, 闫旭 2019 红外与激光工程 48 0814002
Google Scholar
Mao S S, Li Y Q, Liu K, Liu L H, Zheng M, Yan X 2019 Infrared Laser Eng. 48 0814002
Google Scholar
[8] 张宇, 金春水, 马冬梅, 王丽萍 2012 红外与激光工程 41 3384
Zhang Y, Jin C S, Ma D M, Wang L P 2012 Infrared Laser Eng. 41 3384
[9] Feng P, Tang F, Wang X Z, Lu Y J, Xu J H, Guo F D, Zhang G X 2020 Appl. Opt. 59 3093
Google Scholar
[10] 郑东晖, 李金鹏, 陈磊, 朱文华, 韩志刚, 乌兰图雅, 郭仁慧 2016 65 114203
Google Scholar
Zheng D H, Li J P, Chen L, Zhu W H, Han Z G, Wulan T Y, Guo R H 2016 Acta Phys. Sin. 65 114203
Google Scholar
[11] Nicolás D, Ali N B, Marc D, M R M 2022 Appl. Opt. 61 4160
Google Scholar
[12] Lu J S, Li B, Zhao Z, Geng L Q 2022 Opt. Lett. 47 4877
Google Scholar
[13] Smartt R N, Steel W H 1985 Appl. Opt. 24 1402
Google Scholar
[14] Otaki K, Yamamoto T, Fukud Y, Ota K, Nishiyama I, Okazaki S 2002 J. Vac. Sci. Technol. , B 20 295
[15] 卢毅伟, 骆永洁, 刘维, 孔明, 王道档 2023 红外与激光工程 52 20220593
Google Scholar
Lu Y W, Luo Y J, Liu W, Kong M, Wang D D 2023 Infrared Laser Eng. 52 20220593
Google Scholar
[16] Sun Y, Shen H, Li X, Li J, Gao J M, Zhu R H 2019 Appl. Opt. 58 1253
Google Scholar
[17] 冯鹏, 李中梁, 王向朝, 步扬, 卢云君, 郭福东, 李思坤 2022 中国激光 49 2104001
Google Scholar
Feng P, Li Z L, Wang X C, Bu Y, Lu Y J, Guo D F, Li S K 2022 Chin. J. Lasers 49 2104001
Google Scholar
[18] Gao F, Jiang Z D, Zhao Z, Li B 2015 Opt. Eng. 54 014102
Google Scholar
[19] Geng L Q, Li B, Zhao Z, Lu J S 2024 Opt. Laser Eng. 178 108198
Google Scholar
[20] Ota K, Yamamoto T, Fukuda Y, Otaki K, Nishiyama I, Okazaki S 2001 Proc. SPIE 4343 543
Google Scholar
[21] Zhao Z, Li B, Kang X Q, Chen L, Wei X 2019 Appl. Opt. 58 3703
Google Scholar
[22] 高芬, 蒋庄德, 李兵 2014 光学学报 34 0812004
Google Scholar
Gao F, Jiang Z D, Li B 2014 Acta Opt. Sin. 34 0812004
Google Scholar
计量
- 文章访问数: 272
- PDF下载量: 11
- 被引次数: 0