搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高磁场下7Li原子的d波Feshbach共振

陈钟之 赖海健 齐燃 俞振华

引用本文:
Citation:

高磁场下7Li原子的d波Feshbach共振

陈钟之, 赖海健, 齐燃, 俞振华

d-wave Feshbach resonance of 7Li atoms in high magnetic fields

CHEN Zhongzhi, LAI Haijian, QI Ran, YU Zhenhua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Feshbach共振是在特定外场下原子间发生共振相互作用的现象, 主要表现为在共振附近量化低能散射性质的广义散射长度随外场趋于发散. 近年来, 随着冷原子物理的发展, s波及高分波的Feshbach共振相继被发现, 为研究共振相互作用在多体物理中的效应提供了宝贵的途径. 在本文中, 基于多通道量子缺陷理论(MQDT), 我们预言在1039.24 G和1055.64 G外磁场下, 7Li原子间存在两个d波Feshbach共振, 并确定了共振的各项参数, 如共振宽度等. 同时, 我们估计了磁偶极矩相互作用对该两个共振的影响. 我们的结果拓展了在7Li原子气体中研究d波共振相互作用的契机.
    Feshbach resonance is a fundamental phenomenon in cold atomic physics, where interatomic interactions can be precisely changed into a scattering resonance by varying an external magnetic field. This effect plays a crucial role in ultracold atomic experiments, enabling the control of interaction strength, the formation of molecular bound states, and the realization of strongly correlated quantum systems. With the rapid development of cold atom experiments, numerous Feshbach resonances corresponding to different partial waves, such as s-wave, p-wave, and even higher partial wave ones, have been experimentally identified. While s-wave resonances have been widely utilized due to their isotropic nature and strong coupling, and higher partial-wave resonances (including p-wave and d-wave resonances), provide unique opportunities for exploring anisotropic interactions and novel quantum phases. In this study, by using the multichannel quantum defect theory (MQDT), we predict that two d-wave Feshbach resonances are existent in 7Li at 1039.24 G and 1055.64 G, repectively. Physical properties of the two resonances are presented, such as the resonance width and closed channel dimer energy. In addition, we optimize the computational parameters by using the Nelder-Mead algorithm and investigate the possible resonance splitting induced by dipole-dipole interactions in higher partial waves. The presence of these d-wave resonances at high magnetic fields provides a new platform for investigating the interplay between higher-order partial wave interactions and quantum many-body effects. Our results provide opportunities for investigating the effects of higher partial wave Feshbach resonances in high magnetic fields. Our theoretical predictions thus serve as a useful reference for future experimental studies of higher-order resonance phenomena in lithium and other atomic species.
  • 图 1  7Li原子内态能量随外磁场的变化, 其中$ E_6\equiv $$ E_{\text{VdW}}/4 $, van der Waals能量为$ E_{\text{VdW}}\equiv \dfrac{\hbar^2}{2\mu R^2_{\text{VdW}}} $, van der Waals长度为$ R_{\text{VdW}} \equiv\dfrac{1}{2}\left( \dfrac{2\mu C_6}{\hbar^2}\right)^{\frac{1}{4}} $

    Fig. 1.  The internal state energies of 7Li atoms v.s. the external magnetic field B, where $ E_6\equiv E_{\text{VdW}}/4 $, and $ E_{\text{VdW}}\equiv \dfrac{\hbar^2}{2\mu R^2_{\text{VdW}}} $ is the van de Waals energy and $ R_{\text{VdW}} \equiv $$ \dfrac{1}{2}\left( \dfrac{2\mu C_6}{\hbar^2}\right)^{\frac{1}{4}} $ is the van de Waals length.

    图 2  7Li原子d波广义散射长度$ a_2 $在两个共振磁场1039.24 G和1055.64 G附件随磁场的变化处. 图中黑色虚线标注出了共振的位置

    Fig. 2.  The d-wave generalized scattering length $ a_2 $ for 7Li atoms v.s. the external magnetic field B in the vicinity of two resonances at 1039.24 G and 1055.64 G. The black dashed lines represent the resonance points.

    图 3  闭通道中低能束缚态能量$ E_{\mathrm{b}} $在两个共振点附件随磁场的变化. 蓝色点为计算的数据点, 绿色线是线性拟合的数据, 红色虚线标记共振点的位置. 其中$ E_6\equiv E_{\text{VdW}}/4 $, van der Waals能量为$ E_{\text{VdW}}\equiv \dfrac{\hbar^2}{2\mu R^2_{\text{VdW}}} $, van der Waals长度为$ R_{\text{VdW}} \equiv\dfrac{1}{2}\left( \dfrac{2\mu C_6}{\hbar^2}\right)^{\frac{1}{4}} $

    Fig. 3.  The energy $ E_{\mathrm{b}} $ of the low energy bound state in the closed channels v.s. the external magnetic field B in the vicinity of the two resonances. Here $ E_6\equiv E_{\text{VdW}}/4 $, and $ E_{\text{VdW}}\equiv \dfrac{\hbar^2}{2\mu R^2_{\text{VdW}}} $ is the van de Waals energy and $ R_{\text{VdW}} \equiv $$ \dfrac{1}{2}\left( \dfrac{2\mu C_6}{\hbar^2}\right)^{\frac{1}{4}} $ is the van de Waals length.

    图 4  磁偶极矩相互作用导致的共振点劈裂. 两子图中$ a_2 $发散的磁场从小到大分别对应于$ m = 0 $、$ m = 1 $、不考虑劈裂、$ m = 2 $的共振点位置

    Fig. 4.  The resonance splittings due to the magnetic dipole-dipole interaction. In the plots the divergences of $ a_2 $ correspond to the resonances of $ m = 0 $, $ m = 1 $, no splitting, and $ m = 2 $ from small B to big B.

    图 B1  三个参数$ a_{\mathrm{s}} $、$ a_{\mathrm{t}} $以及$ C_6 $根据迭代次数的变化

    Fig. B1.  The three parameters $ a_{\mathrm{s}} $、$ a_{\mathrm{t}} $ and $ C_6 $ vs the number of iterations for optimization.

    图 B2  输出函数$ f(B) $的迭代情况

    Fig. B2.  The iteration behavior of the output function $ f(B) $.

    表 2  7Li和23Na的Feshbach共振

    Table 2.  Feshbach resonances in 7Li and 23Na.

    元素 入射通道 l $ B_{0} $ (G) $ a_{0, {\mathrm{bg}}}/\bar a_0 $ Δ (G) $ \delta\mu/\mu_0 $ $ B_{\mathrm{ext}} $ (G) 数据来源
    7Li aa s 738.2 –0.6753 –159.9 1.93 736.8 [33]
    23Na aa s 851.04 1.459 0.009674 3.8 853 [34]
    s 908.4 1.434 1.085 3.8 907 [34]
    下载: 导出CSV

    表 1  7Li的d-波Feshbach共振

    Table 1.  D-wave Feshbach resonances in 7Li

    B0 (G) $ \text{a}_{2, {\mathrm{bg}}} $/$ \bar a_{2} $ Δ (G) $ \delta\mu/\mu_0 $ sres ζ
    1039.24 1.529 $ 6.397 \times 10^{-4} $ 3.924 $ 2.19 \times 10^{-4} $ $ 6.49 \times 10^{-11} $
    1055.64 1.529 0.0615 3.953 0.021 $ 6.29 \times 10^{-9} $
    下载: 导出CSV

    表 3  不同原子的Feshbach共振

    Table 3.  Feshbach resonances in other alkali atoms.

    元素 入射通道 l $ B_{0} $ (G) $ a_{l, {\mathrm{bg}}}/\bar a_l $ Δ (G)
    7Li ab p 977.12 1.1 121.1
    d 72.9 2.63 148.3
    7Li bc p 514.3 –1.235 –61.07
    1083 –1.3 –15.85
    23Na aa d 578.7 –1.179 –0.04575
    656.2 –8.462 –0.1149
    23Na ab s 977.1 1.464 $ 3.689\times 10^{-3} $
    p 880.1 1.753 0.1491
    d 694.3 –1.147 –0.05086
    23Na bc s 1017 –1.152 –0.0523
    下载: 导出CSV
    Baidu
  • [1]

    Schrödinger E 1926 Annalen der Physik 79 734

    [2]

    Chu S, Bjorkholm J E, Ashkin A, Cable A 1986 Phys. Rev. Lett. 57 314Google Scholar

    [3]

    Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 48 596Google Scholar

    [4]

    Moerdijk A J, Verhaar B J, Axelsson A 1995 Phys. Rev. A 51 4852Google Scholar

    [5]

    Feshbach H 1958 Annals of Physics 5 357Google Scholar

    [6]

    Yao X C, Qi R, Liu X P, Wang X Q, Wang Y X, Wu Y P, Chen H Z, Zhang P, Zhai H, Chen Y A, Pan J W 2019 Nature Physics 15 570. Number: 6 Publisher: Nature Publishing Group

    [7]

    Bartenstein M, Altmeyer A, Riedl S, Geursen R, Jochim S, Chin C, Denschlag J H, Grimm R, Simoni A, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. Lett. 94 103201Google Scholar

    [8]

    Strecker K E, Partridge G B, Hulet R G 2003 Phys. Rev. Lett. 91 080406Google Scholar

    [9]

    Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Phys. Rev. Lett. 90 053201Google Scholar

    [10]

    Zhang R, Yan S, Song H, Guo H, Ning C 2024 Nature Communications 15 3858Google Scholar

    [11]

    Schwartz I, Shimazaki Y, Kuhlenkamp C, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2021 Science 374 336Google Scholar

    [12]

    Koch J, Menon K, Cuestas E, Barbosa S, Lutz E, Fogarty T, Busch T, Widera A 2023 Nature 621 723. Number: 7980 Publisher: Nature Publishing Group

    [13]

    Margulis B, Horn K P, Reich D M, Upadhyay M, Kahn N, Christianen A, van der Avoird A, Groenenboom G C, Meuwly M, Koch C P, Narevicius E 2023 Science 380 77Google Scholar

    [14]

    Yudkin Y, Elbaz R, D’ Incao J P, Julienne P S, Khaykovich L 2024 Nature Communications 15 2127Google Scholar

    [15]

    Köhler T, Góral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311Google Scholar

    [16]

    Bruun G M, Pethick C J 2004 Phys. Rev. Lett. 92 140404Google Scholar

    [17]

    Aymar M, Greene C H, Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015Google Scholar

    [18]

    Makrides C, Gao B 2014 Phys. Rev. A 89 062718Google Scholar

    [19]

    Julienne P S, Hutson J M 2014 Phys. Rev. A 89 052715Google Scholar

    [20]

    Stoof H T C, Koelman J M V A, Verhaar B J 1988 Phys. Rev. B 38 4688Google Scholar

    [21]

    Gao B 1998 Phys. Rev. A 58 1728Google Scholar

    [22]

    Cavagnero M J 1994 Phys. Rev. A 50 2841Google Scholar

    [23]

    Gao B 1999 Physical Review A 59 2778Google Scholar

    [24]

    Gao B, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. A 72 042719Google Scholar

    [25]

    Gao B 2008 Phys. Rev. A 78 012702Google Scholar

    [26]

    Gao B 2009 Phys. Rev. A 80 012702Google Scholar

    [27]

    Gao B 2011 Phys. Rev. A 84 022706Google Scholar

    [28]

    Góral K, Köhler T, Gardiner S A, Tiesinga E, Julienne P S 2004 Journal of Physics B: Atomic, Molecular and Optical Physics 37 3457Google Scholar

    [29]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [30]

    Gaebler J P, Stewart J T, Bohn J L, Jin D S 2007 Phys. Rev. Lett. 98 200403Google Scholar

    [31]

    Weckesser P, Thielemann F, Wiater D, Wojciechowska A, Karpa L, Jachymski K, Tomza M, Walker T, Schaetz T 2021 Nature 600 429Google Scholar

    [32]

    Fey C, Schmelcher P, Imamoglu A, Schmidt R 2020 Phys. Rev. B 101 195

    [33]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [34]

    Inouye S, Andrews M, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [35]

    Lagarias J C, Reeds J A, Wright M H, Wright P E 1998 SIAM Journal on optimization 9 112Google Scholar

    [36]

    Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A, Hulet R G 2009 Phys. Rev. Lett. 102 090402Google Scholar

    [37]

    Moerdijk A J, Verhaar B J, Axelsson A 1995 Phys. Rev. A 51 4852Google Scholar

  • [1] 刘雪梅, 芮扬, 张亮, 武跃龙, 武海斌. 用于冷原子的高精度磁场锁定系统.  , doi: 10.7498/aps.71.20220399
    [2] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞.  , doi: 10.7498/aps.71.20211308
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞.  , doi: 10.7498/aps.70.20211308
    [4] 石悦然, 卢倬成, 王璟琨, 张威. 轨道Feshbach共振附近类碱土金属原子的杂质态问题.  , doi: 10.7498/aps.68.20181937
    [5] 刁鹏鹏, 邓书金, 李芳, 武海斌. 超冷费米气体的膨胀动力学研究新进展.  , doi: 10.7498/aps.68.20182293
    [6] 宁丽娟, 徐 伟. 光学双稳系统中的随机共振.  , doi: 10.7498/aps.56.1944
    [7] 林 敏, 黄咏梅. 基于振动共振的随机共振控制.  , doi: 10.7498/aps.56.6173
    [8] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布.  , doi: 10.7498/aps.55.490
    [9] 冷永刚, 王太勇, 郭 焱, 汪文津, 胡世广. 级联双稳系统的随机共振特性.  , doi: 10.7498/aps.54.1118
    [10] 秦光戎, 龚德纯, 胡岗, 温孝东. 随机共振的模拟实验.  , doi: 10.7498/aps.41.360
    [11] 梁良, 王永昌, 刘学文. GaII能谱的多通道量子数亏损理论(MQDT)分析.  , doi: 10.7498/aps.39.11
    [12] 马锦秀, 徐至展. 共振自聚焦理论.  , doi: 10.7498/aps.36.1
    [13] 廖世强. 原子共振中的相位调制.  , doi: 10.7498/aps.28.124
    [14] 许伯威. KK和KK共振态.  , doi: 10.7498/aps.22.840
    [15] 武尚賢, 黄五羣, 许伯威. 关于Kπ共振态.  , doi: 10.7498/aps.22.961
    [16] 夏意诚. π-π P波共振的近似解.  , doi: 10.7498/aps.22.510
    [17] 葛墨林, 段一士. π-π共振态.  , doi: 10.7498/aps.22.724
    [18] 许伯威. K-π共振态.  , doi: 10.7498/aps.21.221
    [19] 葛墨林, 段一士. 关于π-π共振态.  , doi: 10.7498/aps.21.1903
    [20] 许伯威, 孔凡梅, 宫学惠. K—K共振态.  , doi: 10.7498/aps.20.1129
计量
  • 文章访问数:  232
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-16
  • 修回日期:  2025-02-10
  • 上网日期:  2025-03-07

/

返回文章
返回
Baidu
map