搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有超低比导通电阻的双漂移区双导通路径新型横向双扩散金属氧化物半导体

段宝兴 任宇壕 唐春萍 杨银堂

引用本文:
Citation:

具有超低比导通电阻的双漂移区双导通路径新型横向双扩散金属氧化物半导体

段宝兴, 任宇壕, 唐春萍, 杨银堂

A novel LDMOS with dual-drift region and dual-conduction path with ultra-low specific on-resistance

DUAN Baoxing, REN Yuhao, TANG Chunping, YANG Yintang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出了一种具有双漂移区和双导通路径的新型横向双扩散金属氧化物半导体(LDMOS)器件, 实现了超低比导通电阻(Ron, sp). 其漂移区采用P型和N型纵向交替所构成的双漂移区结构, 并引入平面栅和槽型栅分别控制P型和N型漂移区, 使得器件能够在漂移区中形成两条独立的电子导通或消失路径. 在对平面栅施加正向电压时, 可使P型漂移区的表面发生反型, 形成连接沟道和N+漏极的高浓度电子反型层, 从而极大提高器件导通时的电子密度, 降低比导通电阻. 槽型栅极的引入可使器件在关断时产生一条额外的电子消失路径, 从而缩短器件的关断时间(toff). 此外, 由于引入P型漂移区, 使得电子在P型漂移区内输运时与其体内的空穴发生复合, 从而加快了电子的消失过程并进一步地缩短器件的toff. 仿真结果表明, 在200 V的击穿电压(BV)等级下, 本文所提出的新型LDMOS的Ron, sp为3.43 mΩ·cm2, 关断时间为9 ns. 相比传统的LDMOS器件, Ron, sptoff分别下降了90%, 11.6%. 该器件不仅实现了Ron, sp和BV的良好折中, 而且缩短了器件的toff, 展现出了优异的器件性能.
    In order to improve the discrepancy between specific on-resistance (Ron,sp) and breakdown voltage (BV) of lateral double-diffused metal oxide semiconductor (LDMOS) and enhance the turn-off characteristic, this paper proposes a novel LDMOS device with dual-drift regions and dual-conduction paths, which achieves an ultra-low Ron,sp. The key feature of the proposed device is the introduction of a dual-drift region structure with alternating P-type and N-type regions, combined with planar and trench gates to control the P-type and N-type drift regions, respectively. This configuration enables the formation of two independent electron conduction paths within the drift region. When a positive voltage is applied to the planar gate, a voltage difference is generated between the surface of the P-type drift region and the body of device’s drift. Therefore, under the influence of the voltage difference, the electrons are pulled to the surface of the P-type drift region to invert and form a high-density electron inversion layer that connects the channel and the N+ drain, significantly increasing the electron density during conduction and reducing the Ron,sp. The introduction of the trench gate provides an additional electron disappearance path, which shortens the device's turn-off time (toff). Furthermore, the introduction of the P-type drift region facilitates the recombination of electrons with holes within the P-type drift region, accelerating the electron disappearance process and further reducing the device's toff. Furthermore, the proposed device exhibits a more uniform electric field distribution and higher voltage capability is due to the P+N-N+P+ structure adopted in the PolySi-top layer. During the off-state, both the P+N- junctions and the N+P+ junctions generate electric field peaks at the interfaces. These peaks modulate the electric field distribution across the surface of the drift region. Simulation results indicate that at a BV of 200V, the proposed LDMOS exhibits an Ron,sp of 3.43 mΩ·cm² and a toff of 9 ns. Compared with traditional LDMOS devices, the proposed LDMOS possesses a 90% reduction in Ron,sp and an 11.6% decrease in toff. The proposed device not only achieves an excellent trade-off between Ron,sp and BV but also shortens the toff, demonstrating that the device achieves superior performance.
  • 图 1  器件结构图 (a)传统LDMOS; (b) PND-DP LDMOS; (c) NND-DP LDMOS

    Fig. 1.  Schematic cross-section: (a) Conventional LDMOS; (b) PND-DP LDMOS; (c) NND-DP LDMOS.

    图 2  器件工作原理图 (a) PND-DP LDMOS; (b) NND-DP LDMOS

    Fig. 2.  Schematic of the proposed devices operation: (a) PND-DP LDMOS; (b) NND-DP LDMOS.

    图 3  PND-DP LDMOS器件工艺流程图

    Fig. 3.  The fabricate process of PND-DP LDMOS.

    图 4  器件输出特性曲线

    Fig. 4.  The Id-Vd curve of these three devices.

    图 5  器件漂移区电子浓度分布曲线 (a) PND-DP LDMOS; (b) NND-DP LDMOS

    Fig. 5.  Distribution of the drift electron density: (a) PND-DP LDMOS; (b) NND-DP LDMOS.

    图 6  (a)击穿特性曲线; (b)Ntop对器件击穿特性的影响

    Fig. 6.  (a) Breakdown characteristic curve; (b) the impact of Ntop on device breakdown characteristics.

    图 7  器件电场分布图 (a) 横向电场; (b)纵向电场

    Fig. 7.  Device electric field distribution: (a) Lateral electric field; (b) vertical electric field.

    图 8  N-drift 对器件性能的影响 (a) BV; (b) Ron, sp; (c) FOM

    Fig. 8.  The impact of N-drift on device performance: (a) BV; (b) Ron, sp; (c) FOM.

    图 9  本文所提出的PND-DP LDMOS与其他器件的Ron, sp, -BV比较

    Fig. 9.  Comparison of Ron, sp, -BV between the proposed PND-DP LDMOS and others.

    图 10  器件动态特性 (a)测试电路结构; (b)关断特性曲线

    Fig. 10.  Device dynamic characteristics: (a) Test circuit structure; (b) turn-off characteristic curve.

    表 1  器件仿真中的关键参数

    Table 1.  Key parameters of devices’ simulation.

    参数符号参数含义传统PND-DPNND-DP
    Tox/μm氧化层厚度0.10.10.1
    LD/μm漂移区长度208.58.5
    TDP/TDN2 /μmP-drift(N-drift2)的厚度222
    TDN/TDN1/μmN-drift(N-drift1)的厚度33
    Tb/μmN-buffer的厚度3.53.5
    LCH/μm沟道长度1.51.51.5
    Tt/μm槽栅的深度2.12.1
    NDP/NDN2/cm–3P-drift(N-drift2)的掺杂浓度1×10151×1015
    NDN/NDN1/cm–3N-drift(N-drift1) 的掺杂浓度7.5×10152.5×10151.5×1015
    Ntop/cm–3N-top的掺杂浓度1×10151×1015
    Nsub/cm–3衬底的掺杂浓度3×10143×10143×1014
    下载: 导出CSV

    表 2  PND-DP LDMOS与其他器件的Ron, sp, BV, FOM

    Table 2.  Ron, sp, BV, and FOM of PND-DP LDMOS compared with other devices.

    Refs.Ron, sp/(mΩ·cm2)BV/VFOM/(MW·cm–2)
    [23]8.61502.6
    [24]18.63526.7
    [25]6.125110.3
    [26]5.925811.3
    [27]5.92268.7
    [28]11.32254.5
    [29]483172.1
    [30]8.32507.5
    This work3.421513.3
    5.126013.4
    7.631413.0
    12.136511.0
    下载: 导出CSV
    Baidu
  • [1]

    Kong M, Yi B, Zhang B 2019 IEEE T. Electron. Dev. 66 592Google Scholar

    [2]

    Disney D, Chan W, Lam R, Blattner R, Ma S, Seng W, Chen J W, Cornell M, Williams R 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp24–27

    [3]

    Sun W, Shi L, Sun Z, Yi Y, Li H, Lu S 2006 IEEE T. Electron. Dev. 53 891Google Scholar

    [4]

    Erlbacher T, Bauer A J, Frey L 2010 IEEE Electron Device Lett. 31 464Google Scholar

    [5]

    Qiao M, Li Y, Zhou X, Li Z, Zhang B 2014 IEEE Electron Device Lett. 35 774Google Scholar

    [6]

    Baliga B J 2001 Proc. IEEE 89 822Google Scholar

    [7]

    Efland T R, Tsai C Y, Pendharkar S 1998 International Electron Devices Meeting 1998 San Francisco, CA, USA, December 6–9, 1998 pp679–682

    [8]

    Li M, Chen D, Jung D S, Shi X 2019 2019 China Semiconductor Technology International Conference Shanghai, China, March 17–18, 2019, pp1–3

    [9]

    Baliga B J 2023 Springer Handbook of Semiconductor Devices (Cham) pp491–523

    [10]

    Baliga B J 2019 Fundamentals of Power Semiconductor Devices (Cham: Springer International Publishing

    [11]

    Appels J A, Vaes H M J 1979 1979 International Electron Devices Meeting December, 1979, pp238–241

    [12]

    Hossain Z 2008 2008 20th International Symposium on Power Semiconductor Devices and IC’s Orlando, FL, USA, May 18–22, 2008 pp133–136

    [13]

    Xiarong H, Bo Z, Xiaorong L, Guoliang Y, Xi C, Zhaoji L 2011 J. Semicond. 32 074006Google Scholar

    [14]

    Hardikar S, Tadikonda R, Green D W, Vershinin K V, Narayanan E M S 2004 IEEE T. Electron. Dev. 51 2223Google Scholar

    [15]

    Stengl R, Gosele U 1985 1985 International Electron Devices Washington, DC, USA, December 1–4, 1985 pp154–157

    [16]

    Duan B, Xing L, Wang Y, Yang Y 2022 IEEE T. Electron. Dev. 69 658Google Scholar

    [17]

    Chen Y, Hu S, Cheng K, Jiang Y, Luo J, Wang J, Tang F, Zhou X, Zhou J, Gan P 2016 Micro. Nanostructures 89 59

    [18]

    Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254Google Scholar

    [19]

    Chen X B 2000 Chin. J. Electron. 9 6

    [20]

    Baliga B J, Syau T, Venkatraman P 1992 IEEE Electron Device Lett. 13 427Google Scholar

    [21]

    Wang Y D, Duan B X, Song H T, Yang Y T 2021 IEEE T. Electron. Dev. 68 2414Google Scholar

    [22]

    Inc. Synopsys 2016 SentaurusTM Device User Guide Verison L-2016.03

    [23]

    Chen W Z, Qin H F, Zhang H S, Han Z S 2022 IEEE T. Electron. Dev. 69 1900Google Scholar

    [24]

    Zhou K, Luo X R, Li Z J, Zhang B 2015 IEEE T. Electron. Dev. 62 3334Google Scholar

    [25]

    Cao Z, Sun Q, Zhang H W, Wang Q, Ma C F, Jiao L C 2022 Micromachines 13 843Google Scholar

    [26]

    Cheng J, Zhang B, Li Z 2008 IEEE Electron Device Lett. 29 645Google Scholar

    [27]

    Chen Y M, Lee C L, Tsai M H, Lee C T, Wang C C 2018 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs Chicago, IL, USA, May 13–17, 2018 pp331–334

    [28]

    Zhang S, Tuan H C, Wu X J, Shi L, Wu J 2016 Microelectron. Reliab. 61 125Google Scholar

    [29]

    Chen W, Pjencak J, Agam M, Janssens J, Jerome R, Menon S, Griswold M 2021 2021 33rd International Symposium on Power Semiconductor Devices and ICs Nagoya, Japan, May 30–June 03, 2021 pp287–290

    [30]

    Qiao M, Liu W, Yuan L, Xu P, Ma C, Lin F, Liu K, Guo Y, Lin Z, Zhang S, Zhang B 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs Vancouver, BC, Canada, May 22–25, 2022 pp149–152

    [31]

    Kong M, Yi B, Chen X 2019 2019 IEEE 13th International Conference on Power Electronics and Drive Systems Toulouse, France, July 09–12, 2019 pp1–4

    [32]

    Fan J, Wang Z G, Zhang B, Luo X R 2013 Chin. Phys. B 22 048501Google Scholar

    [33]

    Honarkhah S, Nassif-Khalil S, Salama C A T 2004 Proceedings of the 30th European Solid-State Circuits Conference Leuven, Belgium, September 23, 2004 pp117–120

    [34]

    Hölke A, Antoniou M, Udrea F 2020 32nd International Symposium on Power Semiconductor Devices and ICs Vienna, Austria, September 13–18, 2020 pp435–438

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计.  , doi: 10.7498/aps.71.20211917
    [2] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响.  , doi: 10.7498/aps.70.20201558
    [3] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响.  , doi: 10.7498/aps.70.20210086
    [4] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究.  , doi: 10.7498/aps.64.237302
    [5] 李春来, 段宝兴, 马剑冲, 袁嵩, 杨银堂. 具有P型覆盖层新型超级结横向双扩散功率器件.  , doi: 10.7498/aps.64.167304
    [6] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究.  , doi: 10.7498/aps.64.105101
    [7] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件.  , doi: 10.7498/aps.64.187303
    [8] 段宝兴, 李春来, 马剑冲, 袁嵩, 杨银堂. 阶梯氧化层新型折叠硅横向双扩散功率器件.  , doi: 10.7498/aps.64.067304
    [9] 段宝兴, 曹震, 袁小宁, 杨银堂. 具有N型缓冲层REBULF Super Junction LDMOS.  , doi: 10.7498/aps.63.227302
    [10] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析.  , doi: 10.7498/aps.63.057302
    [11] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构.  , doi: 10.7498/aps.63.107302
    [12] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件.  , doi: 10.7498/aps.63.247301
    [13] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构.  , doi: 10.7498/aps.63.237305
    [14] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计.  , doi: 10.7498/aps.62.237301
    [15] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析.  , doi: 10.7498/aps.61.227302
    [16] 杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽. 具有部分超结的新型SiC SBD特性分析.  , doi: 10.7498/aps.59.566
    [17] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型.  , doi: 10.7498/aps.57.1891
    [18] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , doi: 10.7498/aps.56.2895
    [19] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型.  , doi: 10.7498/aps.56.6660
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性.  , doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  203
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-05
  • 修回日期:  2025-02-17
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map