-
本文提出一种高k介质电导增强SOI LDMOS新结构(HK CE SOI LDMOS),并研究其机理. HK CE SOI LDMOS的特征是在漂移区两侧引入高k介质,反向阻断时,高k介质对漂移区进行自适应辅助耗尽,实现漂移区三维RESURF效应并调制电场,因而提高器件耐压和漂移区浓度并降低导通电阻. 借助三维仿真研究耐压、比导通电阻与器件结构参数之间的关系. 结果表明,HK CE SOI LDMOS与常规超结SOI LDMOS相比,耐压提高16%–18%,同时比导通电阻降低13%–20%,且缓解了由衬底辅助耗尽效应带来的电荷非平衡问题.
-
关键词:
- 高k介质 /
- 绝缘体上硅 (SOI) /
- 击穿电压 /
- 比导通电阻
A high-k dielectric conduction enhancement SOI LDMOS is proposed and investigated by simulation. The high-k dielectric pillars are located at sidewalls of the drift region. The high-k dielectric assists the self-adapted depletion in the drift region, reshapes the electric field distribution, and makes the three-dimensional RESURF effect realized in a high-voltage blocking state. Dependences of the breakdown voltage (VB) and the specific on-resistance (Ron,sp) on device parameters are exhibited using three-dimensional simulation. Simulation results show that the proposed structure increases VB by 16%–18% and decreases Ron.sp by 13%–20%, compared with the conventional super-junction SOI LDMOS. Furthermore, the charge-imbalance caused by the substrate-assisted depletion effect is alleviated.-
Keywords:
- high-k dielectric /
- silicon-on-insulator (SOI) /
- breakdown voltage /
- specific on-resistance
[1] Zhang B, Luo X R, Li Z J 2010 Chin. Phys. B 19 037303
[2] Zhang B, Hu S D, Li Z J 2009 Chin. Phys. B 18 319
[3] Li Z J, Zhang B, Li Q 2007 Acta Phys. Sin. 56 6660 (in Chinese) [李肇基, 张波, 李琦 2007 56 6660]
[4] Chen X B, Mawby P A, Board K, Salama C A T 1998 Microelectron J. 29 1005
[5] Nassif-Khalil S G, Salama C A T 2002 ISPSD 1 81
[6] Pathirana G P V, Udrea F, Ng R, Garner D M, Amaratunga G A J 2003 ISPSD 1 278
[7] Xu S, Gan K P, Samudra G S, Liang Y C, O J K 2000 IEEE Trans Electron Devices 47 1980
[8] Amberetu M A, Salama C A T 2002 ISPSD 1 101
[9] Nassif-Khalil S G, Salama C A T 2003 IEEE Tran. Electron Devices 50 1385
[10] Nassif-Khalil S G, Salama C A T 2003 ISPSD 1 228
[11] Chen Y, Liang Y C, Samudra G S 2006 IEEE Industrial Electronics 32 2746
[12] Chen X 2007 U S Patent 7230310B2 1 1
[13] Luo X R, Jiang Y H, Zhou K, Wang P, Wang X W, Wang Q, Yao G L, Zhang B, Li Z J 2012 IEEE Electron Device Letters 33 1042
[14] Luo X R, Cai J Y, Fan Y, Fan Y H, Wang X W, Wei J, Jang Y H, Zhou K, Yin C, Zhang B, Li Z J, Hu G Y 2013 IEEE Electron Device Letters 60 2840
[15] Pontes M, Lee E J H, Leite E R, Longo E, Varela J A 2000 J. Mater Sci. 35 4783
[16] Wang Z, Kugler V, Helmersson U, Konofaos N, Evangelou E K, Nakao S, Jin P 2001 Appl Phy. Lett. 79 1513
-
[1] Zhang B, Luo X R, Li Z J 2010 Chin. Phys. B 19 037303
[2] Zhang B, Hu S D, Li Z J 2009 Chin. Phys. B 18 319
[3] Li Z J, Zhang B, Li Q 2007 Acta Phys. Sin. 56 6660 (in Chinese) [李肇基, 张波, 李琦 2007 56 6660]
[4] Chen X B, Mawby P A, Board K, Salama C A T 1998 Microelectron J. 29 1005
[5] Nassif-Khalil S G, Salama C A T 2002 ISPSD 1 81
[6] Pathirana G P V, Udrea F, Ng R, Garner D M, Amaratunga G A J 2003 ISPSD 1 278
[7] Xu S, Gan K P, Samudra G S, Liang Y C, O J K 2000 IEEE Trans Electron Devices 47 1980
[8] Amberetu M A, Salama C A T 2002 ISPSD 1 101
[9] Nassif-Khalil S G, Salama C A T 2003 IEEE Tran. Electron Devices 50 1385
[10] Nassif-Khalil S G, Salama C A T 2003 ISPSD 1 228
[11] Chen Y, Liang Y C, Samudra G S 2006 IEEE Industrial Electronics 32 2746
[12] Chen X 2007 U S Patent 7230310B2 1 1
[13] Luo X R, Jiang Y H, Zhou K, Wang P, Wang X W, Wang Q, Yao G L, Zhang B, Li Z J 2012 IEEE Electron Device Letters 33 1042
[14] Luo X R, Cai J Y, Fan Y, Fan Y H, Wang X W, Wei J, Jang Y H, Zhou K, Yin C, Zhang B, Li Z J, Hu G Y 2013 IEEE Electron Device Letters 60 2840
[15] Pontes M, Lee E J H, Leite E R, Longo E, Varela J A 2000 J. Mater Sci. 35 4783
[16] Wang Z, Kugler V, Helmersson U, Konofaos N, Evangelou E K, Nakao S, Jin P 2001 Appl Phy. Lett. 79 1513
计量
- 文章访问数: 6512
- PDF下载量: 576
- 被引次数: 0