-
锂离子精密光谱为束缚态量子电动力学的验证以及原子核结构的研究提供了独特的平台.本文综述了实验和理论联合研究团队近年来对6,7Li+离子23S1和23PJ态超精细劈裂的高精度理论计算与实验测量的研究成果.在理论方面,理论团队采用束缚态量子电动力学方法对23S1和23PJ态的超精细劈裂进行了计算,精确至mα6阶.在实验方面,实验团队分别通过饱和荧光光谱法和光学Ramsey方法对7Li+和6Li+离子的超精细劈裂进行了高精度测量,并由此提取了6,7Li核的Zemach半径.结果显示,6Li的Zemach半径与核模型计算值存在显著差异,揭示了6Li核的奇异特性.这不仅为原子核结构的探索提供了重要信息,也将进一步推动少电子原子和分子的精密光谱研究.Precision spectroscopy of lithium ions offers a unique research platform for exploring bound state quantum electrodynamics and investigating the structure of atomic nuclei. This article provides an overview of our recent efforts, which focus on the precision theoretical calculations and experimental measurements of the hyperfine splittings of 6,7Li+ ions in the 23S1 and 23PJ states. In our theoretical framework, we apply bound state quantum electrodynamics to calculate the hyperfine splitting of the 23S1 and 23PJ states with remarkable precision, achieving an accuracy on the order of mα6. Using Hylleraas basis sets, we first solve the non-relativistic Hamiltonian of the three-body system to derive highprecision energies and wave functions. Subsequently, we consider various orders of relativity and QED corrections using the perturbation method, leading to a final calculated accuracy of the hyperfine splitting on the order of tens of kHz. In our experimental efforts, we have developed a low-energy metastable lithium-ion source that provides a stable and continuous ion beam in the 23S1 state. Using this ion beam, we employed saturated fluorescence spectroscopy to enhance the precision of hyperfine structure splittings of 7Li+ in the 23S1 and 23PJ states to about 100 kHz. Furthermore, by utilizing the optical Ramsey method, we obtained the most precise values of the hyperfine splittings of 6Li+, with the smallest uncertainty of about 10 kHz. By combining theoretical calculations and experimental measurements, our team derived the Zemach radii of the 6,7Li nuclei, revealing a significant deviation between the Zemach radius of 6Li and the values predicted by the nuclear model. These findings illuminate the distinct attributes of the 6Li nucleus, catalyzing further investigations in atomic nucleus and propelling advancements in precision spectroscopy of few-electron atoms and molecules.
-
Keywords:
- precision spectroscopy /
- quantum electrodynamics /
- Zemach radius
-
[1] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001
[2] Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510
[3] Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001
[4] Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791
[5] Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002
[6] Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002
[7] Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013Rev. Mod. Phys. 85 1383
[8] Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501
[9] Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801
[10] Knight R D, Prior M H 1980 Phys. Rev. A 21 179
[11] Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159
[12] Drake G W F 1971 Phys. Rev. A 3 908
[13] Schüler H 1924 Naturwissenschaften 12 579
[14] Herzberg G, Moore H R 1959 Can. J Phys. 37 1293
[15] Heisenberg W 1926 Z. Phys. 39 499
[16] Güttinger P, Pauli W 1931 Z. Phys. 67 743
[17] Güttinger P 1930 Z. Physik A 64 749
[18] Macek J 1969 Phys. Rev. Lett. 23 1
[19] Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103
[20] Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488
[21] Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233
[22] Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460
[23] Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25
[24] Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, Putlitz G 1982 Sov. J. Quantum Electron. 12 664
[25] Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268
[26] Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023
[27] Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207
[28] Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506
[29] Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728
[30] Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001
[31] Yerokhin V A 2008 Phys. Rev. A 78 012513
[32] Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002
[33] Guan H, S. Chen, Qi X Q, S. Liang, Sun W, P. Zhou, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, K. Gao 2020 Phys. Rev. A 102 030801
[34] Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002
[35] Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002
[36] Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510
[37] Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517
[38] Patkóš V c v, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510
[39] Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501
[40] Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403
[41] Pachucki K 2006 Phys. Rev. A 74 022512
[42] Yerokhin V A, Pachucki K 2015 J Phys. Chem. Ref. Data 44 031206
[43] Karshenboim S G, Ivanov V G 2002 Eur. Phys. J D 19 13
[44] McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973
[45] Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504
[46] Zemach A C 1956 Phys. Rev. 104 1771
[47] Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519
[48] Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112
[49] Artoni, M. and Carusotto, I. and Minardi, F. 2000 Phys. Rev. A 62 023402
[50] Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504
[51] Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 it Science 358 79
[52] Ramsey N F 1950 Phys. Rev. 78 695
[53] Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Optics 21 6097
[54] Stone N 2016 At. Data Nucl. Data Tables 111 1
[55] Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802
计量
- 文章访问数: 133
- PDF下载量: 6
- 被引次数: 0