搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于电路量子电动力学系统中光子自由度的消除方案

孟建宇 王培月 冯伟 杨国建 李新奇

引用本文:
Citation:

关于电路量子电动力学系统中光子自由度的消除方案

孟建宇, 王培月, 冯伟, 杨国建, 李新奇

On the schemes of cavity photon elimination in circuit-quantum electrodynamics systems

Meng Jian-Yu, Wang Pei-Yue, Feng Wei, Yang Guo-Jian, Li Xin-Qi
PDF
导出引用
  • 基于超导传输线和超导量子比特相互耦合的电路量子电动力学(quantum Electrodynamics, QED)系统, 是目前固态量子信息领域的一个倍受关注的物理系统, 也是研究量子测量和量子控制的理想实验平台. 由于其中涉及的驱动场和超导传输线谐振腔支持的光子频率都在微波区, 在量子测量和量子控制研究中往往遇到 大量光子数引起的状态空间维数过大带来的数值模拟方面的困难. 为了避免这个困难, 往往采取"消除"光子自由度的办法, 建立一个只保留量子比特状态自由度的有效描述方案. 本文通过对单比特的量子测量动力学的数值模拟, 检验了 "绝热消除"和"极化子变换"两种方案的适用条件. 结果表明, 在量子非破坏(quantum non-demolition, QND) 测量情况下, 极化子变换精确适用于 任意驱动强度和任意(光子)泄漏速率微腔; 但在非QND测量情况下, 极化子变换相对通常的绝热消除方案, 并无优势. 在强泄漏微腔和弱耦合情况下, 两种消除光子自由度的方法都可以较好地描述 测量动力学; 但如果微腔光子泄漏速率不是很大或量子比特与微腔耦合较强, 则需要纳入光子自由度做完整模拟, 此时的量子测量属性是一个尚待研究的课题.
    The solid-state superconducting circuit-QED (quantum electrodynamics) system is a promising candidate for quantum computing and quantum information processing, which serves also as an ideal platform for quantum measurement and quantum control studies. In this context, a large number of cavity photons may be involved in the quantum dynamics and will degrade the simulation efficiency. To avoid this difficulty, it is helpful to eliminate the degrees of freedom of the cavity photons, and obtain an effective master-equation description which contains only the qubit states. In this work, we examine two such schemes, the adiabatic elimination (AE) and the more recently proposed polaron transformation (PT) approaches, by comparing their results with exact numerical simulations. We find that in the absence of qubit-flip, which is a specific quantum nondemolition (QND) measurement, the PT scheme is superior to the AE method. Actually, in this case the PT scheme catches the measurement dynamics exactly. However, in the presence of qubit-flip such as for qubit oscillation measurement, the PT scheme is no longer better than the AE approach. We conclude that both schemes, in the weak measurement regime, can work almost equally well. This corresponds to strong cavity damping or weak coupling between the qubit and cavity photons. Out of this regime, unfortunately, one has to include the cavity photons into numerical simulations and more advanced methods/techniques are waiting for their exploration in this field.
    • 基金项目: 国家自然科学基金(批准号: 101202101, 10874176)和国家重点基础研究发展计划(批准号: 2011CB808502, 2012CB932704)资助的课题.
    • Funds: This work was supported by the National Natural Science Foundation of China (Grant Nos. 101202101, 10874176), and the National Basic Research Program of China (Grant Nos. 2011CB808502, 2012CB932704).
    [1]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [2]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 24

    [4]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [5]

    Houck A A, Schuster D I, Gambetta J, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [6]

    Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M, Cleland A N 2008 Nature 454 310

    [7]

    Leek P J, Fink J M, Blais A, Bianchetti R, Gppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889

    [8]

    Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y, Tsai J S 2007 Nature 449 588

    [9]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [10]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [11]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [12]

    Sarovar M, Goan H S, Spiller T P, Milburn G J 2005 Phys. Rev. A 72 062327

    [13]

    Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L, Li X Q 2010 Phys. Rev. A 82 032335

    [14]

    Feng W, Wang P, Ding X, Xu L, Li X Q 2011 Phys. Rev. A 83 042313

    [15]

    Wiseman H M, Milburn G J 1993 Phys. Rev. A 47 642

    [16]

    Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I, Girvin S M 2008 Phys. Rev. A 77 012112

    [17]

    Hutchison C L, Gambetta J M, Blais A, Wilhelm F K 2009 Can. J. Phys. 87 225

    [18]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [19]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [20]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [21]

    Korotkov A N, Averin D V 2001 Phys. Rev. B 64 165310

    [22]

    Gurvitz S A, Berman G P 2005 Phys. Rev. B 72 073303

    [23]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [24]

    Wiseman H M, Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press)

    [25]

    Ruskov R, Korotkov A N 2002 Phys. Rev. B 66 041401(R)

    [26]

    Jin J S, Li X Q, Yan Y J 2006 Phys. Rev. B 73 233302

  • [1]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [2]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [3]

    Haroche S, Kleppner D 1989 Phys. Today 24

    [4]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [5]

    Houck A A, Schuster D I, Gambetta J, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [6]

    Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M, Cleland A N 2008 Nature 454 310

    [7]

    Leek P J, Fink J M, Blais A, Bianchetti R, Gppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J, Wallraff A 2007 Science 318 1889

    [8]

    Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y, Tsai J S 2007 Nature 449 588

    [9]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [10]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [11]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [12]

    Sarovar M, Goan H S, Spiller T P, Milburn G J 2005 Phys. Rev. A 72 062327

    [13]

    Liu Z, Kuang L, Hu K, Xu L, Wei S, Guo L, Li X Q 2010 Phys. Rev. A 82 032335

    [14]

    Feng W, Wang P, Ding X, Xu L, Li X Q 2011 Phys. Rev. A 83 042313

    [15]

    Wiseman H M, Milburn G J 1993 Phys. Rev. A 47 642

    [16]

    Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I, Girvin S M 2008 Phys. Rev. A 77 012112

    [17]

    Hutchison C L, Gambetta J M, Blais A, Wilhelm F K 2009 Can. J. Phys. 87 225

    [18]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [19]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [20]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [21]

    Korotkov A N, Averin D V 2001 Phys. Rev. B 64 165310

    [22]

    Gurvitz S A, Berman G P 2005 Phys. Rev. B 72 073303

    [23]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [24]

    Wiseman H M, Milburn G J 2010 Quantum Measurement and Control (Cambridge: Cambridge University Press)

    [25]

    Ruskov R, Korotkov A N 2002 Phys. Rev. B 66 041401(R)

    [26]

    Jin J S, Li X Q, Yan Y J 2006 Phys. Rev. B 73 233302

  • [1] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论.  , 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [2] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现.  , 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [3] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移.  , 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [4] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除.  , 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [5] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于多比特电路量子动力学系统中光子自由度的消除方案研究.  , 2012, 61(24): 240305. doi: 10.7498/aps.61.240305
    [6] 罗质华, 余超凡, 林洽武. Fröhlich 极化子的非经典基态.  , 2011, 60(5): 057104. doi: 10.7498/aps.60.057104
    [7] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法.  , 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [8] 高 琨, 刘晓静, 刘德胜, 解士杰. 极化子单激发态的反向极化研究.  , 2005, 54(11): 5324-5328. doi: 10.7498/aps.54.5324
    [9] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学.  , 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [10] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子.  , 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
    [11] 张俊香, 张天才, D.vanEffenterre, 谢常德, 彭堃墀. 常温下LED串接放大实现QND光学测量.  , 2000, 49(2): 226-230. doi: 10.7498/aps.49.226
    [12] 许宗荣, 田之悦. 一维分子链中的极化子.  , 1995, 44(9): 1467-1470. doi: 10.7498/aps.44.1467
    [13] 汪克林, 陈庆虎, 完绍龙. 极化子新的变分计算.  , 1994, 43(3): 433-437. doi: 10.7498/aps.43.433
    [14] 李景德, 陆夏莲, 雷德铭. 高绝缘体中的极化子.  , 1992, 41(11): 1898-1905. doi: 10.7498/aps.41.1898
    [15] 林仁明, 张林. 受驱动光学系统多光子量子统计理论(Ⅲ)——绝热消除方法的改进.  , 1989, 38(4): 548-558. doi: 10.7498/aps.38.548
    [16] 邢定钰, 龚昌德. 1:3 Peierls系统中的极化子.  , 1984, 33(8): 1198-1201. doi: 10.7498/aps.33.1198
    [17] 陈开茅, 秦国刚, 王忠安, 金泗轩. 消除载流子分布的不均匀性的影响准确测量深中心俘获载流子的截面.  , 1984, 33(4): 486-495. doi: 10.7498/aps.33.486
    [18] 潘金声. 极性晶体的表面或界面极化子.  , 1982, 31(3): 335-347. doi: 10.7498/aps.31.335
    [19] 顾世洧. 极化子有效质量与温度的关系.  , 1980, 29(5): 609-617. doi: 10.7498/aps.29.609
    [20] 任敬儒. 在核乳胶中畸变和噪音对多次库仑散射测量的影响及其消除.  , 1964, 20(1): 83-90. doi: 10.7498/aps.20.83
计量
  • 文章访问数:  8038
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-27
  • 修回日期:  2012-03-13
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map