搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散时间切换广义系统的一致有限时间稳定性

高在瑞 沈艳霞 纪志成

引用本文:
Citation:

离散时间切换广义系统的一致有限时间稳定性

高在瑞, 沈艳霞, 纪志成

Uniform finite-time stability of discrete-time switched descriptor systems

Gao Zai-Rui, Shen Yan-Xia, Ji Zhi-Cheng
PDF
导出引用
  • 针对一类离散时间切换广义系统, 研究其一致有限时间稳定性问题. 首先, 把广义系统的有限时间稳定性概念推广到离散切换广义系统; 然后, 利用Lyapunov-like函数方法, 给出了离散切换广义系统在任意给定的切换规则下是正则、 因果的, 且有限时间有界和有限时间稳定的充分条件, 同时给出了保证离散切换广义系统一致有限时间稳定的状态反馈控制器的具体设计方法. 仿真算例结果说明了该控制方法的有效性.
    The problem of uniform finite-time stability for a class of discrete-time switched descriptor systems is considered. Firstly, the concept of finite-time stability for continuous descriptor systems is extended to discrete-time switched descriptor systems. Secondly, based on the Lyapunov-like function method, and under arbitrary switching signal, sufficient conditions under which discrete-time switched descriptor systems are regular and causal, the uniform finite-time is bounded and uniform finite-time is stable, are derived. Then, the state feedback controllers are designed to guarantee the discrete-time switched descriptor system uniform finite-time stablility. Finally, some numerical examples show that the results obtained in this paper are effective.
    • 基金项目: 国家自然科学基金(批准号: 61174032), 教育部新世纪优秀人才支持计划(批准号: NCET-10-0437)和中央高校基本科研业务费专项资金(批准号: JUDCF10063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61174032), the New Century Excellent Talents in University (Grant No. NCET-10-0437), and the Fundamental Research Funds for the Central Universities (Grant No. JUDCF10063).
    [1]

    Ma Y C, Zhang Q L 2007 Acta Phys. Sin. 56 1958 (in Chinese) [马跃超, 张庆灵 2007 56 1958]

    [2]

    Zhao J L, Wang J, Wei W 2011 Acta Phys. Sin. 60 100203 (in Chinese) [赵建利, 王京, 魏伟 2011 60 100203]

    [3]

    Feng J E, Wu Z, Sun J B 2005 Acta Automatica Sinica 31 634

    [4]

    Luo S K 2004 Acta Phys. Sin. 53 5 (in Chinese) [罗绍凯 2004 53 5]

    [5]

    Boukas E 2009 Stochastic Analysis and Application 27 637

    [6]

    Liberzon D 1999 IEEE Control System Magazine 19 59

    [7]

    Zhang W A, Yu L 2009 Automatica 45 139

    [8]

    Minh V T, Awang M, Parman S 2011 International Journal of Control, Automation, and Systems 9 1220

    [9]

    Lin X Z, Du H B, Li S H 2011 Control and Decision 26 841 (in Chinese) [林相泽, 都海波, 李世华 2011 控制与决策 26 841]

    [10]

    Allerhand I L, Shaked U 2011 IEEE Transactions on Automatic Control 56 381

    [11]

    Gao Z R, Ji Z C 2011 Control and Decision 26 925 (in Chinese) [高在瑞, 纪志成 2011 控制与决策 26 925]

    [12]

    Liu W, Lu Z Y 2010 Applied Mechanics and Materials 29-32 2150

    [13]

    Wang T C, Gao Z R 2008 Acta Automatica Sinica 34 1013 (in Chinese) [王天成, 高在瑞 2008 自动化学报 34 1013]

    [14]

    Koenig D, Marx B 2009 IET Control Theory Appl. 3 661

    [15]

    Lin J X, Fei S M 2010 Acta Automatica Sinica 36 1773

    [16]

    Meng B,Zhang J F 2006 Acta Automatica Sinica 32 179

    [17]

    Ma S P, Zhang C H, Wu Z 2008 Applied Mathematics and Computation 206 413

    [18]

    Dorato P 1961 Proc of the IRE Convention record, Part 4, New York, May 9, 1961, 83

    [19]

    Amato F, Ambrosino R, Ariola M 2011 International Journal of Robust and Nonlinear Control 21 1080

    [20]

    Gao T G, Chen Z Q, Chen G R, Yuan Z Z 2006 Chin. Phys. 15 1190

    [21]

    Wei D Q, Zhang B 2009 Chin. Phys. B 18 1399

    [22]

    Amato F, Cosentino C, Merola A 2010 IEEE Trans on Automatic Control 55 430

    [23]

    Orlov Y 2011 IEEE Transactions on Automatic Control 56 614

    [24]

    Shen Y J 2008 Control and Decision 23 107 (in Chinese) [沈艳军 2008 控制与决策 23 107]

  • [1]

    Ma Y C, Zhang Q L 2007 Acta Phys. Sin. 56 1958 (in Chinese) [马跃超, 张庆灵 2007 56 1958]

    [2]

    Zhao J L, Wang J, Wei W 2011 Acta Phys. Sin. 60 100203 (in Chinese) [赵建利, 王京, 魏伟 2011 60 100203]

    [3]

    Feng J E, Wu Z, Sun J B 2005 Acta Automatica Sinica 31 634

    [4]

    Luo S K 2004 Acta Phys. Sin. 53 5 (in Chinese) [罗绍凯 2004 53 5]

    [5]

    Boukas E 2009 Stochastic Analysis and Application 27 637

    [6]

    Liberzon D 1999 IEEE Control System Magazine 19 59

    [7]

    Zhang W A, Yu L 2009 Automatica 45 139

    [8]

    Minh V T, Awang M, Parman S 2011 International Journal of Control, Automation, and Systems 9 1220

    [9]

    Lin X Z, Du H B, Li S H 2011 Control and Decision 26 841 (in Chinese) [林相泽, 都海波, 李世华 2011 控制与决策 26 841]

    [10]

    Allerhand I L, Shaked U 2011 IEEE Transactions on Automatic Control 56 381

    [11]

    Gao Z R, Ji Z C 2011 Control and Decision 26 925 (in Chinese) [高在瑞, 纪志成 2011 控制与决策 26 925]

    [12]

    Liu W, Lu Z Y 2010 Applied Mechanics and Materials 29-32 2150

    [13]

    Wang T C, Gao Z R 2008 Acta Automatica Sinica 34 1013 (in Chinese) [王天成, 高在瑞 2008 自动化学报 34 1013]

    [14]

    Koenig D, Marx B 2009 IET Control Theory Appl. 3 661

    [15]

    Lin J X, Fei S M 2010 Acta Automatica Sinica 36 1773

    [16]

    Meng B,Zhang J F 2006 Acta Automatica Sinica 32 179

    [17]

    Ma S P, Zhang C H, Wu Z 2008 Applied Mathematics and Computation 206 413

    [18]

    Dorato P 1961 Proc of the IRE Convention record, Part 4, New York, May 9, 1961, 83

    [19]

    Amato F, Ambrosino R, Ariola M 2011 International Journal of Robust and Nonlinear Control 21 1080

    [20]

    Gao T G, Chen Z Q, Chen G R, Yuan Z Z 2006 Chin. Phys. 15 1190

    [21]

    Wei D Q, Zhang B 2009 Chin. Phys. B 18 1399

    [22]

    Amato F, Cosentino C, Merola A 2010 IEEE Trans on Automatic Control 55 430

    [23]

    Orlov Y 2011 IEEE Transactions on Automatic Control 56 614

    [24]

    Shen Y J 2008 Control and Decision 23 107 (in Chinese) [沈艳军 2008 控制与决策 23 107]

  • [1] 曹伟, 郭媛, 孙明. 一类离散时间广义系统的迭代学习控制.  , 2016, 65(12): 120201. doi: 10.7498/aps.65.120201
    [2] 王月娥, 吴保卫, 汪锐. 切换系统的异步镇定: 相邻模型依赖平均驻留时间.  , 2015, 64(5): 050201. doi: 10.7498/aps.64.050201
    [3] 曹伟, 郭媛, 孙明. 基于迭代学习的离散切换系统故障估计.  , 2014, 63(18): 180202. doi: 10.7498/aps.63.180202
    [4] 曹伟, 孙明. 时变离散切换系统的迭代学习控制.  , 2014, 63(2): 020201. doi: 10.7498/aps.63.020201
    [5] 张耀利, 吴保卫, 王月娥, 韩晓霞. 切换奇异系统的有限时间稳定.  , 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [6] 陈章耀, 雪增红, 张春, 季颖, 毕勤胜. 周期切换下Rayleigh振子的振荡行为及机理.  , 2014, 63(1): 010504. doi: 10.7498/aps.63.010504
    [7] 李清都, 郭建丽. 切换系统Lyapunov指数的算法及应用.  , 2014, 63(10): 100501. doi: 10.7498/aps.63.100501
    [8] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制.  , 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [9] 张晓芳, 周建波, 张春, 毕勤胜. 非线性切换系统的动力学行为分析.  , 2013, 62(24): 240505. doi: 10.7498/aps.62.240505
    [10] 高超, 毕勤胜, 张正娣. 一个跃变电路切换系统的振荡行为及分岔机理分析.  , 2013, 62(2): 020504. doi: 10.7498/aps.62.020504
    [11] 吴立锋, 关永, 刘勇. 分段线性电路切换系统的复杂行为及非光滑分岔机理.  , 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [12] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族.  , 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [13] 赵建利, 王京, 魏伟. Lorenz混沌系统的近似有限时间稳定控制.  , 2011, 60(10): 100203. doi: 10.7498/aps.60.100203
    [14] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步.  , 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [15] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制.  , 2010, 59(4): 2250-2255. doi: 10.7498/aps.59.2250
    [16] 邹少存, 徐 伟, 靳艳飞. 具有时滞状态反馈的随机Van der Pol系统的动力学研究.  , 2008, 57(12): 7527-7534. doi: 10.7498/aps.57.7527
    [17] 刘扬正, 姜长生, 林长圣, 熊 星, 石 磊. 一类切换混沌系统的实现.  , 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
    [18] 李瑞红, 徐 伟, 李 爽. 一类新混沌系统的线性状态反馈控制.  , 2006, 55(2): 598-604. doi: 10.7498/aps.55.598
    [19] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制.  , 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [20] 罗晓曙, 陈关荣, 汪秉宏, 方锦清, 邹艳丽, 全宏俊. 状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌.  , 2003, 52(4): 790-794. doi: 10.7498/aps.52.790
计量
  • 文章访问数:  7522
  • PDF下载量:  795
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-12
  • 修回日期:  2011-11-08
  • 刊出日期:  2012-06-05

/

返回文章
返回
Baidu
map