搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lorenz混沌系统的近似有限时间稳定控制

赵建利 王京 魏伟

引用本文:
Citation:

Lorenz混沌系统的近似有限时间稳定控制

赵建利, 王京, 魏伟

Approximate finite-time stable control of Lorenz Chaos system

Zhao Jian-Li, Wang Jing, Wei Wei
PDF
导出引用
  • 针对Lorenz混沌系统,研究其有限时间稳定控制问题.考虑系统存在不确定非线性,提出一种可使受控Lorenz系统实现近似有限时间稳定的控制方法.改进并设计一种扩张状态观测器,解决了受控Lorenz系统中不确定非线性未知问题.通过引入奇异扰动性理论,分析了闭环系统的近似有限时间稳定性.仿真实验结果验证了该控制方法及扩张状态观测器的有效性.
    In the paper, the finite-time stability control problem for the Lorenz chaos system is studied. Considering the existence of uncertainty and nonlinearity in the Lorenz chaos system, a control method is proposed, which makes the controlled Lorenz system achieve approximate finite-time stability. And one kind of extended state observer is improved and designed to solve the unknown problem of uncertainty and nonlinearity for the controlled Lorenz system. The approximate finite-time stability of the closed-loop system is analysed by introducing the singular perturbation theary. Simulation results show the effectiveness of the control method and observer.
    • 基金项目: 国家高技术研究发展计划(批准号:2009AA04Z163)资助的课题.
    [1]

    Chen G R, L J H 2003 Dynamics Analysis,Control and Synchronization for Lorenz system families (1st ed)(Beijing: Science press) P1,P4(in Chinese) [陈关荣、吕金虎 2003 Lorenz系统族的动力学分析、控制与同步(第一版)(北京:科学出版社) 第1页、第4页]

    [2]

    Yu J Z,Su N, Vincent T L 1998 Acta Phys.Sin. 47 P0397(in Chinese)[余建祖、苏 楠 1998 47 P0397]

    [3]
    [4]

    Tang G N,Luo X S,Kong L J 2000 Acta Phys.Sin. 49 0030(in Chinese)[唐国宁、罗晓曙、孔令江 2000 49 0030]

    [5]
    [6]

    Chen M Y,Zhou D H,Shang Y 2004 Chaos,Solitions and Fractals 21 P295

    [7]
    [8]
    [9]

    Chen G P,Hao J B 2009 Acta Phys.Sin. 58 2914(in Chinese)[陈光平、郝加波 2009 58 2914]

    [10]
    [11]

    Cai G L,Zheng S, Tian L X 2008 Chin.Phys. B 17 2412

    [12]
    [13]

    Li S H, Tian Y P 2003 Chin.Phys. 12 P590

    [14]
    [15]

    Wang Y N,Tan W,Duan F 2006 Chin.Phys. 15 P89

    [16]

    Qi D L,Wang Q,Gu H 2008 Chin.Phys. B 17 P847

    [17]
    [18]
    [19]

    Wang C, Ge S S 2001 International Journal of Bifurcation and Chaos 11 1115

    [20]

    Pishkenari H N, Meghdari A 2008 Proceeding of the 5th International Symposium on Mechatronics and its Applications (ISMA08) 8 4244

    [21]
    [22]

    Bai E W,Karl E L 2000 Chaos,Solitons and Fractals 11 1041

    [23]
    [24]
    [25]

    Guo H J,Liu J H 2004 Acta Phys.Sin. 53 4080(in Chinese)[郭会军、刘君华 2004 53 4080]

    [26]
    [27]

    Yang S K,Chen C L,Yau H T 2002 Chaos, Solitons and Fractals 13 767

    [28]
    [29]

    Yau H T,Yan J J 2004 Chao,Solition and Fractals 19 891

    [30]
    [31]

    Zhang H,Ma X K, Liu W Z 2004 Chaos,Solitons and Fractals 21 1249

    [32]

    Sanjay P B, Dennis S B 2005 Math.Control Signals Systems 17 101

    [33]
    [34]

    Ahmad N A, Hassan K K.A 1999 IEEE Transactions on Automatic Control 44 1672

    [35]
    [36]
    [37]

    Zheng Q,Gao L Q, Gao Z Q 2007 Proceedings of the 46th IEEE Conference on Decision and Control ThB07.6 3501

    [38]

    Hassan K K 2007 Nonlinear Systems(3st ed)(Beijing:Publishing House of Electronics Industry) P613

    [39]
    [40]
    [41]

    Hassan K K 2008 International Conference on Control,Automation and Systems xlvii lvii

    [42]
    [43]

    Kokotovic P,Hassan K 1986 Singular Perturbation Methods in control Analysis and Design(London:Academic Press, SIAM) P136

    [44]
    [45]

    Zheng D Z 2002 Linear System Theory(2st ed)(Beijing: Tsinghua University Press) P238 (in Chinese) [郑大钟 2002 线性系统理论(第二版)(北京:清华大学出版社) 第238页]

    [46]
    [47]

    Zhang K Y,Xu Z,Lu Q 2001 MATRIX THEARY(1st ed)(Xi an:Northwestern Polytechnical University Press) P83 (in Chinese)[张凯院、徐 仲、陆全 2001 矩阵论(第一版)(西安:西北工业大学出版社) 第83页]

    [48]

    Andrea B,Lionel R 2005 Liapunov Functions and Stability in Control Theary(2st ed)(Springer-Verlag Berlin Heidelberg) P175

    [49]
  • [1]

    Chen G R, L J H 2003 Dynamics Analysis,Control and Synchronization for Lorenz system families (1st ed)(Beijing: Science press) P1,P4(in Chinese) [陈关荣、吕金虎 2003 Lorenz系统族的动力学分析、控制与同步(第一版)(北京:科学出版社) 第1页、第4页]

    [2]

    Yu J Z,Su N, Vincent T L 1998 Acta Phys.Sin. 47 P0397(in Chinese)[余建祖、苏 楠 1998 47 P0397]

    [3]
    [4]

    Tang G N,Luo X S,Kong L J 2000 Acta Phys.Sin. 49 0030(in Chinese)[唐国宁、罗晓曙、孔令江 2000 49 0030]

    [5]
    [6]

    Chen M Y,Zhou D H,Shang Y 2004 Chaos,Solitions and Fractals 21 P295

    [7]
    [8]
    [9]

    Chen G P,Hao J B 2009 Acta Phys.Sin. 58 2914(in Chinese)[陈光平、郝加波 2009 58 2914]

    [10]
    [11]

    Cai G L,Zheng S, Tian L X 2008 Chin.Phys. B 17 2412

    [12]
    [13]

    Li S H, Tian Y P 2003 Chin.Phys. 12 P590

    [14]
    [15]

    Wang Y N,Tan W,Duan F 2006 Chin.Phys. 15 P89

    [16]

    Qi D L,Wang Q,Gu H 2008 Chin.Phys. B 17 P847

    [17]
    [18]
    [19]

    Wang C, Ge S S 2001 International Journal of Bifurcation and Chaos 11 1115

    [20]

    Pishkenari H N, Meghdari A 2008 Proceeding of the 5th International Symposium on Mechatronics and its Applications (ISMA08) 8 4244

    [21]
    [22]

    Bai E W,Karl E L 2000 Chaos,Solitons and Fractals 11 1041

    [23]
    [24]
    [25]

    Guo H J,Liu J H 2004 Acta Phys.Sin. 53 4080(in Chinese)[郭会军、刘君华 2004 53 4080]

    [26]
    [27]

    Yang S K,Chen C L,Yau H T 2002 Chaos, Solitons and Fractals 13 767

    [28]
    [29]

    Yau H T,Yan J J 2004 Chao,Solition and Fractals 19 891

    [30]
    [31]

    Zhang H,Ma X K, Liu W Z 2004 Chaos,Solitons and Fractals 21 1249

    [32]

    Sanjay P B, Dennis S B 2005 Math.Control Signals Systems 17 101

    [33]
    [34]

    Ahmad N A, Hassan K K.A 1999 IEEE Transactions on Automatic Control 44 1672

    [35]
    [36]
    [37]

    Zheng Q,Gao L Q, Gao Z Q 2007 Proceedings of the 46th IEEE Conference on Decision and Control ThB07.6 3501

    [38]

    Hassan K K 2007 Nonlinear Systems(3st ed)(Beijing:Publishing House of Electronics Industry) P613

    [39]
    [40]
    [41]

    Hassan K K 2008 International Conference on Control,Automation and Systems xlvii lvii

    [42]
    [43]

    Kokotovic P,Hassan K 1986 Singular Perturbation Methods in control Analysis and Design(London:Academic Press, SIAM) P136

    [44]
    [45]

    Zheng D Z 2002 Linear System Theory(2st ed)(Beijing: Tsinghua University Press) P238 (in Chinese) [郑大钟 2002 线性系统理论(第二版)(北京:清华大学出版社) 第238页]

    [46]
    [47]

    Zhang K Y,Xu Z,Lu Q 2001 MATRIX THEARY(1st ed)(Xi an:Northwestern Polytechnical University Press) P83 (in Chinese)[张凯院、徐 仲、陆全 2001 矩阵论(第一版)(西安:西北工业大学出版社) 第83页]

    [48]

    Andrea B,Lionel R 2005 Liapunov Functions and Stability in Control Theary(2st ed)(Springer-Verlag Berlin Heidelberg) P175

    [49]
  • [1] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究.  , 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [2] 张园, 徐琦, 孙明玮, 陈增强. 基于快速全线性预测控制的混沌系统控制与同步.  , 2015, 64(1): 010502. doi: 10.7498/aps.64.010502
    [3] 张耀利, 吴保卫, 王月娥, 韩晓霞. 切换奇异系统的有限时间稳定.  , 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [4] 陈强, 南余荣, 邢科新. 基于扩张状态观测器的永磁同步电机混沌系统自适应滑模控制.  , 2014, 63(22): 220506. doi: 10.7498/aps.63.220506
    [5] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制.  , 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [6] 高在瑞, 沈艳霞, 纪志成. 离散时间切换广义系统的一致有限时间稳定性.  , 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [7] 龙文, 焦建军. 基于混合交叉进化算法的混沌系统参数估计.  , 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [8] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究.  , 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [9] 李秀春, 谷建华, 王云岚, 赵天海. 一类带有未知参数的受扰混沌系统的观测器同步.  , 2011, 60(3): 030505. doi: 10.7498/aps.60.030505
    [10] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步.  , 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [11] 孟娟, 王兴元. 基于模糊观测器的Chua混沌系统投影同步.  , 2009, 58(2): 819-823. doi: 10.7498/aps.58.819
    [12] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步.  , 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [13] 王兴元, 武相军. 基于状态观测器的一类混沌系统的反同步.  , 2007, 56(4): 1988-1993. doi: 10.7498/aps.56.1988
    [14] 张 荣, 胡爱花, 徐振源. 单向耦合网络连接的Lorenz系统的追踪控制.  , 2007, 56(12): 6851-6856. doi: 10.7498/aps.56.6851
    [15] 李丽香, 彭海朋, 杨义先, 王向东. 基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计.  , 2007, 56(1): 51-55. doi: 10.7498/aps.56.51
    [16] 姚利娜, 高金峰, 廖旎焕. 实现混沌系统同步的非线性状态观测器方法.  , 2006, 55(1): 35-41. doi: 10.7498/aps.55.35
    [17] 李国辉, 徐得名, 周世平. 基于状态观测器的参数调制混沌数字通信.  , 2004, 53(3): 706-709. doi: 10.7498/aps.53.706
    [18] 关新平, 何宴辉, 范正平. 扰动情况下一类混沌系统的观测器同步.  , 2003, 52(2): 276-280. doi: 10.7498/aps.52.276
    [19] 姚利娜, 高金峰. 基于状态观测器实现一类混沌系统的控制.  , 2002, 51(3): 487-491. doi: 10.7498/aps.51.487
    [20] 关新平, 彭海朋, 李丽香, 王益群. Lorenz混沌系统的参数辨识与控制.  , 2001, 50(1): 26-29. doi: 10.7498/aps.50.26
计量
  • 文章访问数:  9878
  • PDF下载量:  1409
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-17
  • 修回日期:  2011-01-24
  • 刊出日期:  2011-05-05

/

返回文章
返回
Baidu
map