搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限时间Lyapunov指数的高精度计算新方法

曹小群 宋君强 任开军 冷洪泽 银福康

引用本文:
Citation:

有限时间Lyapunov指数的高精度计算新方法

曹小群, 宋君强, 任开军, 冷洪泽, 银福康

Highly accurate computation of finite-time Lyapunov exponent

Cao Xiao-Qun, Song Jun-Qiang, Ren Kai-Jun, Leng Hong-Ze, Yin Fu-Kang
PDF
导出引用
  • 针对目前有限时间Lyapunov指数(FTLE)计算方法准确度不高和无法获得边界值的问题,基于对偶数理论提出了一种新的高精度计算方法. 首先描述了基于有限空间差分方法计算FTLE 的缺点和问题;其次介绍了基于对偶数理论的高精度导数计算方法及其显著优点,并将动力系统的柯西-格林形变张量计算问题转化为对偶数空间中非线性微分方程数值求解问题;最后对单摆和非线性Duffing振子两个典型物理动力系统进行了数值实验. 结果表明:基于对偶数理论的新方法能有效、方便和高精度地计算出有限时间Lyapunov指数场,并成功识别出所包含的拉格朗日相关结构.
    Aiming at the shortcomings of current method of calculating finite-time Lyapunov exponent (FTLE), such as low accuracy, inability to obtain boundary values, etc., a method of highly accurately computing FTLE is proposed based on dual number theory. Firstly, the weakness and disadvantages of the finite difference method used widely for computing FTLE are described. Secondly, the dual number theory is introduced to evaluate the derivatives accurately and efficiently, and its distinct virtues are also presented. The computation of Cauchy-Green deformation tensors for a dynamical system is transformed into a numerical integration problem of solving the nonlinear ordinary differential equation in dual number space by the new method. Finally, the proposed method is applied to typical pendulum system and nonlinear Duffing oscillator separately. The results of simulation experiments indicate that the new method is effective, convenient and accurate for computing the field of FTLE, from which Lagrangian coherent structures can be identified successfully.
    • 基金项目: 国家自然科学基金(批准号:41475094,41105063,41375105)和高分青年创新基金项目(批准号:GFZX04060103-5-19)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41475094, 41105063, 41375105) and the Young Innovation Science Foundation of CHREO (Grant No. GFZX04060103-5-19).
    [1]

    Wu H, Hou W, Wang W X, Yan P C 2013 Acta Phys. Sin. 62 129204(in Chinese)[吴浩, 侯威, 王文祥, 颜鹏程 2013 62 129204]

    [2]

    Zhang W C, Tan S C, Gao P Z 2013 Acta Phys. Sin. 62 060502(in Chinese)[张文超, 谭思超, 高璞珍 2013 62 060502]

    [3]

    Yao T L, Liu H F, Xu J L, Li W F 2012 Acta Phys. Sin. 61 234704(in Chinese)[姚天亮, 刘海峰, 许建良, 李伟锋 2012 61 234704]

    [4]

    Chen B H, Li J P, Ding R Q 2006 Sci. China D 36 1068

    [5]

    Ding R Q, Li J P 2007 Phys. Lett. A 364 396

    [6]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [7]

    Haller G 2001 Physica D 149 248

    [8]

    Haller G 2002 Phys. Fluids A 14 1851

    [9]

    Farazmand M, Haller G 2012 Chaos 22 013128

    [10]

    Tang W, Mathur M, Haller G, Hahn D C 2010 J. Atmos. Sci. 67 2307

    [11]

    Sapsis T, Haller G 2009 J. Atmos. Sci. 66 2481

    [12]

    Sapsis T, Peng J, Haller G 2011 Bull. Math. Biol. 73 1841

    [13]

    Tang W, Haller G, Baik J J, Ryu Y H 2009 Phys. Fluids 21 043302

    [14]

    Mathur M, Haller G, Peacock T 2007 Phys. Rev. Lett. 98 144502

    [15]

    Green M A, Rowley C W, Haller G 2007 J. Fluid Mech. 572 111

    [16]

    Lekien F, Coulliette C, Mariano A J 2005 Physica D. 210 1

    [17]

    Shadden S C, Lekien F, Marsden J E 2005 Physica D 212 271

    [18]

    Shadden S C, Dabiri J O, Marsden J E 2006 Phys. Fluids 18 047105

    [19]

    Shadden S C, Katija K, Rosenfeld M 2007 J. Fluid Mech. 593 315

    [20]

    Pan C, Wang J J, Zhang C 2009 Sci. Sin. G: Phys. Mech. Astronom. 39 627(in Chinese)[潘翀, 王晋军, 张草 2009 中国科学G辑 物理学 力学 天文学 39 627]

    [21]

    Yang A L, Jia L B, Yin X Z 2012 J. Exp. Mech. 27 677(in Chinese)[杨岸龙, 贾来兵, 尹协振 2012 实验力学 27 677]

    [22]

    Lei P F, Zhang J Z, Wang Z P, Chen J H 2014 Acta Phys. Sin. 63 084702(in Chinese)[雷鹏飞, 张家忠, 王琢璞, 陈嘉辉 2014 63 084702]

    [23]

    Gawlik E S, Du Toit P C, Campagnola S 2009 Celest. Mech. Dyn. Astron. 103 227

    [24]

    Qi R, Xu S J 2013 Aerospace Control and Application 39 6(in Chinese)[祁瑞, 徐世杰 2013 空间控制技术与应用 39 6]

    [25]

    Ali S, Shah M 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA, May 13-15, 2007 pp1-6

    [26]

    Clifford W K 1871 Proceedings of the London M athematical Society London, UK, April 13-15, 1871 p381

    [27]

    Study E 1981 Mathematische Annalen 39 441

    [28]

    He J H, Lee E W M 2009 Phys. Lett. A 373 1644

    [29]

    He J H 2007 Comput. Math. Appl. 54 881

    [30]

    Brodsky V, Shoham M 1999 Mechanism and Machine Theory 34 693

    [31]

    Wang J Y, Liang H Z, Sun Z W 2010 J. Astronaut. 31 1711(in Chinese)[王剑颖, 梁海朝, 孙兆伟 2010 宇航学报 31 1711]

    [32]

    Spall R, Yu W 2013 J. Fluids Engineer. 135 014501

    [33]

    Yu W B, Blair M 2013 Comput. Phys. Commun. 184 1446

    [34]

    Cao X Q, Song J Q, Zhang W M, Zhao J 2011 Acta Phys. Sin. 60 070511(in Chinese)[曹小群, 宋君强, 张卫民, 赵军 2011 60 070511]

    [35]

    Cao X Q, Song J Q, Zhang W M, Zhu X Q 2011 Acta Phys. Sin. 60 080401(in Chinese)[曹小群, 宋君强, 张卫民, 朱小谦 2011 60 080401]

    [36]

    He J H 2008 Int. J. Modern. Phys. B 22 3487

    [37]

    He J H 2001 Int. J. Nonlin. Sci. Numer. 2 309

    [38]

    Wu G C 2012 Chin. Phys. B 21 120504

    [39]

    Wu G C, Dumitru B 2013 Appl. Math. Model. 37 6183

    [40]

    Cao X Q, Song J Q, Zhu X Q 2012 Chin. Phys. B 21 020203

  • [1]

    Wu H, Hou W, Wang W X, Yan P C 2013 Acta Phys. Sin. 62 129204(in Chinese)[吴浩, 侯威, 王文祥, 颜鹏程 2013 62 129204]

    [2]

    Zhang W C, Tan S C, Gao P Z 2013 Acta Phys. Sin. 62 060502(in Chinese)[张文超, 谭思超, 高璞珍 2013 62 060502]

    [3]

    Yao T L, Liu H F, Xu J L, Li W F 2012 Acta Phys. Sin. 61 234704(in Chinese)[姚天亮, 刘海峰, 许建良, 李伟锋 2012 61 234704]

    [4]

    Chen B H, Li J P, Ding R Q 2006 Sci. China D 36 1068

    [5]

    Ding R Q, Li J P 2007 Phys. Lett. A 364 396

    [6]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [7]

    Haller G 2001 Physica D 149 248

    [8]

    Haller G 2002 Phys. Fluids A 14 1851

    [9]

    Farazmand M, Haller G 2012 Chaos 22 013128

    [10]

    Tang W, Mathur M, Haller G, Hahn D C 2010 J. Atmos. Sci. 67 2307

    [11]

    Sapsis T, Haller G 2009 J. Atmos. Sci. 66 2481

    [12]

    Sapsis T, Peng J, Haller G 2011 Bull. Math. Biol. 73 1841

    [13]

    Tang W, Haller G, Baik J J, Ryu Y H 2009 Phys. Fluids 21 043302

    [14]

    Mathur M, Haller G, Peacock T 2007 Phys. Rev. Lett. 98 144502

    [15]

    Green M A, Rowley C W, Haller G 2007 J. Fluid Mech. 572 111

    [16]

    Lekien F, Coulliette C, Mariano A J 2005 Physica D. 210 1

    [17]

    Shadden S C, Lekien F, Marsden J E 2005 Physica D 212 271

    [18]

    Shadden S C, Dabiri J O, Marsden J E 2006 Phys. Fluids 18 047105

    [19]

    Shadden S C, Katija K, Rosenfeld M 2007 J. Fluid Mech. 593 315

    [20]

    Pan C, Wang J J, Zhang C 2009 Sci. Sin. G: Phys. Mech. Astronom. 39 627(in Chinese)[潘翀, 王晋军, 张草 2009 中国科学G辑 物理学 力学 天文学 39 627]

    [21]

    Yang A L, Jia L B, Yin X Z 2012 J. Exp. Mech. 27 677(in Chinese)[杨岸龙, 贾来兵, 尹协振 2012 实验力学 27 677]

    [22]

    Lei P F, Zhang J Z, Wang Z P, Chen J H 2014 Acta Phys. Sin. 63 084702(in Chinese)[雷鹏飞, 张家忠, 王琢璞, 陈嘉辉 2014 63 084702]

    [23]

    Gawlik E S, Du Toit P C, Campagnola S 2009 Celest. Mech. Dyn. Astron. 103 227

    [24]

    Qi R, Xu S J 2013 Aerospace Control and Application 39 6(in Chinese)[祁瑞, 徐世杰 2013 空间控制技术与应用 39 6]

    [25]

    Ali S, Shah M 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA, May 13-15, 2007 pp1-6

    [26]

    Clifford W K 1871 Proceedings of the London M athematical Society London, UK, April 13-15, 1871 p381

    [27]

    Study E 1981 Mathematische Annalen 39 441

    [28]

    He J H, Lee E W M 2009 Phys. Lett. A 373 1644

    [29]

    He J H 2007 Comput. Math. Appl. 54 881

    [30]

    Brodsky V, Shoham M 1999 Mechanism and Machine Theory 34 693

    [31]

    Wang J Y, Liang H Z, Sun Z W 2010 J. Astronaut. 31 1711(in Chinese)[王剑颖, 梁海朝, 孙兆伟 2010 宇航学报 31 1711]

    [32]

    Spall R, Yu W 2013 J. Fluids Engineer. 135 014501

    [33]

    Yu W B, Blair M 2013 Comput. Phys. Commun. 184 1446

    [34]

    Cao X Q, Song J Q, Zhang W M, Zhao J 2011 Acta Phys. Sin. 60 070511(in Chinese)[曹小群, 宋君强, 张卫民, 赵军 2011 60 070511]

    [35]

    Cao X Q, Song J Q, Zhang W M, Zhu X Q 2011 Acta Phys. Sin. 60 080401(in Chinese)[曹小群, 宋君强, 张卫民, 朱小谦 2011 60 080401]

    [36]

    He J H 2008 Int. J. Modern. Phys. B 22 3487

    [37]

    He J H 2001 Int. J. Nonlin. Sci. Numer. 2 309

    [38]

    Wu G C 2012 Chin. Phys. B 21 120504

    [39]

    Wu G C, Dumitru B 2013 Appl. Math. Model. 37 6183

    [40]

    Cao X Q, Song J Q, Zhu X Q 2012 Chin. Phys. B 21 020203

  • [1] 曹小群, 皇群博, 刘柏年, 朱孟斌, 余意. 基于对偶数理论的资料同化新方法.  , 2015, 64(13): 130502. doi: 10.7498/aps.64.130502
    [2] 张耀利, 吴保卫, 王月娥, 韩晓霞. 切换奇异系统的有限时间稳定.  , 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [3] 于万波. 截面的几何形状决定三维函数的混沌特性.  , 2014, 63(12): 120501. doi: 10.7498/aps.63.120501
    [4] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制.  , 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [5] 石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解.  , 2013, 62(4): 040203. doi: 10.7498/aps.62.040203
    [6] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究.  , 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [7] 高在瑞, 沈艳霞, 纪志成. 离散时间切换广义系统的一致有限时间稳定性.  , 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [8] 时培明, 韩东颖, 李纪召, 蒋金水, 刘彬. 一类高维相对转动非线性动力系统的Lyapunov-Schmidt约化与奇异性分析.  , 2012, 61(19): 194501. doi: 10.7498/aps.61.194501
    [9] 陶为俊, 浣石. 沿时间逐步求解应力的拉格朗日分析方法研究.  , 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [10] 曹小群, 宋君强, 张卫民, 赵军, 朱小谦. 海-气耦合动力系统的改进变分迭代解法.  , 2012, 61(3): 030203. doi: 10.7498/aps.61.030203
    [11] 赵建利, 王京, 魏伟. Lorenz混沌系统的近似有限时间稳定控制.  , 2011, 60(10): 100203. doi: 10.7498/aps.60.100203
    [12] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步.  , 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [13] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应.  , 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [14] 陈旭, 丘水生. 精确配置离散动力系统的所有Lyapunov指数.  , 2010, 59(11): 7630-7634. doi: 10.7498/aps.59.7630
    [15] 李清都, 杨晓松. 一种二维不稳定流形的新算法及其应用.  , 2010, 59(3): 1416-1422. doi: 10.7498/aps.59.1416
    [16] 莫嘉琪, 王 辉, 林万涛. 地-气耦合动力系统的近似解析解.  , 2006, 55(2): 485-489. doi: 10.7498/aps.55.485
    [17] 雷 敏, 孟 光, 冯正进. 连续动力系统时间序列的非线性检验.  , 2005, 54(3): 1059-1063. doi: 10.7498/aps.54.1059
    [18] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅱ),广义能量极小值原理和系统的发展.  , 2003, 52(6): 1354-1359. doi: 10.7498/aps.52.1354
    [19] 刘海峰, 赵艳艳, 代正华, 龚欣, 于遵宏. 利用小波分析计算离散动力系统的最大Lyapunov指数.  , 2001, 50(12): 2311-2317. doi: 10.7498/aps.50.2311
    [20] 杨志安, 陈式刚, 王光瑞. 动力系统的时间序列重构分析.  , 1996, 45(6): 904-911. doi: 10.7498/aps.45.904
计量
  • 文章访问数:  7532
  • PDF下载量:  746
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-13
  • 修回日期:  2014-05-16
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map