搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆纳米盘中磁涡旋结构的方位角自旋波模式

吕刚 曹学成 秦羽丰 王林辉 厉桂华 高峰 孙丰伟 张红

引用本文:
Citation:

椭圆纳米盘中磁涡旋结构的方位角自旋波模式

吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红

Azimuthal spin wave modes in an elliptical nanomagnet with single vortex configuration

Lü Gang, Cao Xue-Cheng, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei, Zhang Hong
PDF
导出引用
  • 本文针对坡莫合金椭圆形盘中的磁涡旋结构, 采用微磁学模拟与傅里叶分析相结合的技术研究了磁涡旋自旋波的本征激发模式. 通过沿样品短轴方向施加一面内方向的脉冲磁场, 观察到一系列方位角自旋波模式. 观察到的自旋波模式具有两重对称性, 可以通过C2群理论来进行类型的划分. 此外, 自旋波模式的频率随着方位角指标的变化而线性增加. 模拟结果显示样品的平均交换能量密度明显的高于平均静磁能量密度; 局域交换能量密度主要集中在涡核初始位置, 而局域静磁能量密度主要分布在长轴附近. 交换作用对受限于铁磁薄膜椭圆盘中的单个涡旋态的能量要起主导作用, 从而导致方位角自旋波模式频率随着方位角指标的增加而增加.
    In comparison with uniformly magnetized states, vortex structures demonstrate a rich frequency spectrum of spin-wave (SW) excitations. However, a detailed theoretical description of the magnetic modes is generally still a challenge due to the difficulty of analytic calculation, except for the well-defined symmetric circular states. In contrast, the method of micromagnetic simulations combined with Fourier analysis is shown to be very powerful for gaining insight into the nature of magnetic excitation modes. Vortex excitation modes have been reported to be directly influenced by the geometric symmetry of the elements and/or the nature of the initial perturbation of pulse field. In order to understand how the reduced symmetry affects the vortex SW modes, we perform the micromagnetic simulations on vortex modes excited in a submicron-sized thin ellipse. In order to excite the spin-wave modes, a short in-plane Gaussian field pulse is applied along the short axis direction. After the pulse, the off-centered vortex core moves following an elliptical trajectory around its equilibrium position. Simulations provide the time evolution of the local magnetizations (at each discretization point) and dynamics of the spatially averaged magnetization. To determine the mode frequencies, the spectrum is obtained from the average magnetization through Fourier transformation from time domain the frequency domain. By means of Fourier analysis, a variety of azimuthal SW modes can be observed in the excitation spectrum. The ellipse in single vortex state has a twofold rotational symmetry with a rotation of πup around the z-axis (out-of plane) and can be described by the C2 group. The observed azimuthal modes can be divided into two categories according to their symmetry. Two modes occur alternately with increasing azimuthal number, indicating that the magnetic excitation modes remain to keep the symmetry of the ellipse structure. Their frequencies are found to increase linearly with the azimuthal index number. An increase of the SW frequency with increasing number of nodal planes is rather well known, which results from the competition between exchange and dipolar energy terms. According to the temporal evolution of the ellipse's spatially averaged energy densities, our micromagnetic simulation shows that the average exchange energy is significantly higher than the magnetostatic energy, suggesting that the exchange interaction plays a more important role in the excitation modes. The exchange energy density is mainly focused on the core origin while the largest contribution of the magnetostatic energy is distributed near the long axis. Thus, we can conclude that the exchange interaction provides the principal contribution to the vortex energy in such small ellipses with a single vortex state, resulting in the increasing frequency versus the azimuthal number, that is observed.
      通信作者: 张红, zhanghong@sdau.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51302157)资助的课题.
      Corresponding author: Zhang Hong, zhanghong@sdau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.51302157).
    [1]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [2]

    Acremann Y, Back C H, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H 2000 Science 290 492

    [3]

    Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H, Fukamichi K 2002 J. Appl. Phys. 91 8037

    [4]

    Guslienko K Y, Scholz W, Chantrell R W, Novosad V 2005 Phys. Rev. B 71 144407

    [5]

    Park J P, Eames P, Engebretson D M, Berezovsky J, Crowell P A 2003 Phys. Rev. B 67 020403

    [6]

    Buess M, Höllinger R, Haug T, Perzlmaier K, Krey U, Pescia D, Scheinfein M R, Weiss D, Back C H 2004 Phys. Rev. Lett. 93 077207

    [7]

    Novosad V, Grimsditch M, Guslienko K Y, Vavassori P, Otani Y, Bader S D 2002 Phys. Rev. B 66 052407

    [8]

    Perzlmaier K, Buess M, Back C H, Demidov V E, Hillebrands B, Demokritov S O 2005 Phys. Rev. Lett. 94 057202

    [9]

    Park J P, Crowell P A 2005 Phys. Rev. Lett. 95 167201

    [10]

    Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stohr J, Padmore H A 2004 Science304 420

    [11]

    Hu C L, Liao L, Stamps R 2014 Chin. Phys. 23 127501

    [12]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [13]

    Yan M, Leaf G, Kaper H, Camley R, Grimsditch M 2006 Phys. Rev. B 73 014425

    [14]

    Zhu X, Liu Z, Metlushko V, Grutter P, Freeman M R 2005 Phys. Rev. B 71 180408

    [15]

    Kawada Y, Naganuma H, Demiray A S, Oogane M, Ando Y 2014 Appl. Phys. Lett. 105 052407

    [16]

    Guslienko K Y, Novosad V, Otani Y, Shima H, Fukamichi K 2001 Phys. Rev. B 65 024414

    [17]

    Shibata J, Shigeto K, Otani Y 2003 Phys. Rev. B 67 224404

    [18]

    Zhang H, Liu Y W, Yan M, Riccardo Hertel 2010 IEEE Transactions on Magnetics 2010 46 1675

    [19]

    Guslienko K Y, Buchanan K S, Bader S D, Novosad V 2005 Appl. Phys. Lett. 86 223112

    [20]

    Montoncello F, Giovannini L, Nizzoli F 2009 J. Appl. Phys. 105 07E304

    [21]

    Buchanan K S, Roy P E, Grimsditch M, Fradin F Y, Guslienko K Y, Bader S D, Novosad V 2005 Nature. Phys. 1 172

    [22]

    Buchanan K S, Roy P E, Fradin F Y, Guslienko K Y, Grimsditch M, Bader S D, Novosad V 2006 J. Appl. Phys. 99 08C707

    [23]

    Ivanov B A, Schnitzer H J, Mertens F G, Wysin G M 1998 Phys. Rev. B 58 8464

    [24]

    Giovannini L, Montoncello F, Nizzoli F, Gubbiotti G, Carlotti G, Okuno T, Shinjo T, Grimsditch M 2004 Phys. Rev. B 70 172404

    [25]

    Xie K X, Lin W W, Zhang P, Sang H 2014 Appl. Phys. Lett. 105 102402

    [26]

    Yan M, Hertel R, Schneider C M 2007 Phys. Rev. B 76 094407

    [27]

    Lv G, Zhang H, Cao X C, Gao F, Liu Y W 2013 Appl. Phys. Lett. 103 252404

    [28]

    Guslienko K Y, Slavin A N, Tiberkevich V, Kim S K 2008 Phys. Rev. Lett. 101 247203

  • [1]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [2]

    Acremann Y, Back C H, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H 2000 Science 290 492

    [3]

    Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H, Fukamichi K 2002 J. Appl. Phys. 91 8037

    [4]

    Guslienko K Y, Scholz W, Chantrell R W, Novosad V 2005 Phys. Rev. B 71 144407

    [5]

    Park J P, Eames P, Engebretson D M, Berezovsky J, Crowell P A 2003 Phys. Rev. B 67 020403

    [6]

    Buess M, Höllinger R, Haug T, Perzlmaier K, Krey U, Pescia D, Scheinfein M R, Weiss D, Back C H 2004 Phys. Rev. Lett. 93 077207

    [7]

    Novosad V, Grimsditch M, Guslienko K Y, Vavassori P, Otani Y, Bader S D 2002 Phys. Rev. B 66 052407

    [8]

    Perzlmaier K, Buess M, Back C H, Demidov V E, Hillebrands B, Demokritov S O 2005 Phys. Rev. Lett. 94 057202

    [9]

    Park J P, Crowell P A 2005 Phys. Rev. Lett. 95 167201

    [10]

    Choe S B, Acremann Y, Scholl A, Bauer A, Doran A, Stohr J, Padmore H A 2004 Science304 420

    [11]

    Hu C L, Liao L, Stamps R 2014 Chin. Phys. 23 127501

    [12]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [13]

    Yan M, Leaf G, Kaper H, Camley R, Grimsditch M 2006 Phys. Rev. B 73 014425

    [14]

    Zhu X, Liu Z, Metlushko V, Grutter P, Freeman M R 2005 Phys. Rev. B 71 180408

    [15]

    Kawada Y, Naganuma H, Demiray A S, Oogane M, Ando Y 2014 Appl. Phys. Lett. 105 052407

    [16]

    Guslienko K Y, Novosad V, Otani Y, Shima H, Fukamichi K 2001 Phys. Rev. B 65 024414

    [17]

    Shibata J, Shigeto K, Otani Y 2003 Phys. Rev. B 67 224404

    [18]

    Zhang H, Liu Y W, Yan M, Riccardo Hertel 2010 IEEE Transactions on Magnetics 2010 46 1675

    [19]

    Guslienko K Y, Buchanan K S, Bader S D, Novosad V 2005 Appl. Phys. Lett. 86 223112

    [20]

    Montoncello F, Giovannini L, Nizzoli F 2009 J. Appl. Phys. 105 07E304

    [21]

    Buchanan K S, Roy P E, Grimsditch M, Fradin F Y, Guslienko K Y, Bader S D, Novosad V 2005 Nature. Phys. 1 172

    [22]

    Buchanan K S, Roy P E, Fradin F Y, Guslienko K Y, Grimsditch M, Bader S D, Novosad V 2006 J. Appl. Phys. 99 08C707

    [23]

    Ivanov B A, Schnitzer H J, Mertens F G, Wysin G M 1998 Phys. Rev. B 58 8464

    [24]

    Giovannini L, Montoncello F, Nizzoli F, Gubbiotti G, Carlotti G, Okuno T, Shinjo T, Grimsditch M 2004 Phys. Rev. B 70 172404

    [25]

    Xie K X, Lin W W, Zhang P, Sang H 2014 Appl. Phys. Lett. 105 102402

    [26]

    Yan M, Hertel R, Schneider C M 2007 Phys. Rev. B 76 094407

    [27]

    Lv G, Zhang H, Cao X C, Gao F, Liu Y W 2013 Appl. Phys. Lett. 103 252404

    [28]

    Guslienko K Y, Slavin A N, Tiberkevich V, Kim S K 2008 Phys. Rev. Lett. 101 247203

  • [1] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件.  , 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] 刘想, 王希光, 李志雄, 郭光华. 铁磁畴壁中自旋极化电流诱导的左旋极化自旋波.  , 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [3] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究.  , 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [4] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波.  , 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [5] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控.  , 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [6] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟.  , 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [7] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量.  , 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构.  , 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用.  , 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [10] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响.  , 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [11] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学.  , 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [12] 潘靖, 周岚, 胡经国. 交换偏置系统中的反铁磁磁化与自旋波.  , 2009, 58(9): 6487-6493. doi: 10.7498/aps.58.6487
    [13] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波.  , 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [14] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波.  , 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [15] 蒋建军, 张松俊, 刘拥军. 阻挫对准一维非对称子格反铁磁链自旋波激发的影响.  , 2006, 55(9): 4888-4892. doi: 10.7498/aps.55.4888
    [16] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究.  , 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
    [17] 戴松涛, 李振亚. 横场伊辛铁磁薄膜的自旋波.  , 1990, 39(4): 639-648. doi: 10.7498/aps.39.639
    [18] 钟健. Heisenberg反铁磁超晶格的自旋波.  , 1990, 39(3): 486-490. doi: 10.7498/aps.39.486
    [19] 邝宇平, 翁世浚. 立方晶体铁磁各向异性的自旋波理论.  , 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] 于渌. 铁磁金属的表面阻抗与自旋波共振.  , 1964, 20(7): 607-623. doi: 10.7498/aps.20.607
计量
  • 文章访问数:  5872
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-27
  • 修回日期:  2015-07-14
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map