搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性多孔纳米片微波磁导率的微磁学研究

涂宽 韩满贵

引用本文:
Citation:

磁性多孔纳米片微波磁导率的微磁学研究

涂宽, 韩满贵

Micromagnetics simulation on the microwave permeability of magnetic porous nano-flakes

Tu Kuan, Han Man-Gui
PDF
导出引用
  • 本文基于微磁学理论模拟了多孔-Fe纳米片的微波磁性能. 与无纳米孔洞的纳米片对比, 发现由于纳米孔洞的引入导致退磁能发生改变, 破坏了纳米片原有的磁畴分布, 使纳米片内部存在数目更多、体积更小、局域有效场强不同的磁畴, 从而增加了高频磁损耗峰的数目. 由于部分损耗峰的相互交叠, 为在1030 GHz范围拓宽电磁波吸收的带宽提供了潜在可能性. 模拟结果表明多孔纳米片的磁损耗峰数目、强度、峰宽和频率分布受孔洞排布方式和孔洞数目的影响. 由于纳米孔洞的存在可以降低材料的密度, 模拟结果表明多孔-Fe纳米片可用于开发吸收频段宽、重量轻的电磁波吸收材料.
    Many modern electronic devices are operated on a frequency above 1 GHz. Frequencies of electromagnetic noises coming from these devices are usually larger than 10 GHz. High-frequency magnetic losses in the natural resonance mechanism can be used to dissipate the energy of electromagnetic noises. Ferromagnetic nanostructural materials (nano flakes or nanowires) in strong shape anisotropy fields are one of the promising anti electromagnetic interference (EMI) materials due to their large high-frequency magnetic losses. Application of EMI requires that the electromagnetic wave absorbing materials should be lightweight and have a wide absorbing bandwidth. However, most electromagnetic wave absorbing materials reported do not have these features. To meet these demands, the microwave magnetic properties of porous -Fe nano flakes (length width thickness: 300 nm 100 nm 10 nm) have been simulated based on micromagnetics theory. Compared to the nano flakes without nano pores, simulation results reveal that the demagnetization fields will be altered if a nano flake contains several pores. Effect of nano pores (diameter =15 nm) in different arrangements (rows columns: 210; 25; 22; 45) on the high-frequency magnetic properties is investigated in this paper. It is found that nano flakes can alter the configurations of magnetic domains. More domains in small sizes in an inhomogeneous localized magnetic anisotropic field have been achieved. Consequently, more high-frequency magnetic loss peaks can be found. Overlapping of magnetic loss peaks implies that it potentially enables to widen the bandwidth of electromagnetic absorption within 1030 GHz. Furthermore, simulations reveal that the quantity, magnitude and resonance frequencies of the loss peaks are strongly dependent on the quantity and the arrangement of nano pores. Besides, the existence of multi magnetic loss peaks has been studied for ellipsoid objects from the perspective of inhomogeneously localized effective magnetic fields. Results reveal that the frequently observed wide magnetic loss peaks in experimental data may be due to the inhomogeneously localized effective magnetic fields of an absorber containing a plentiful of randomly oriented particles. Clearly, compared to the nano flakes without pores, the nano flakes with pores can significantly reduce the volume density. Therefore, our simulation results show that porous nano flakes can be a good lightweight electromagnetic wave absorber candidate with wide absorbing bandwidths.
      通信作者: 韩满贵, magnet@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61271039)和四川省科技基金(批准号: 2013JQ0006, 2015 HH0016) 资助的课题.
      Corresponding author: Han Man-Gui, magnet@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271039), and the Scientific Projects of Sichuan Province, China (Grant Nos. 2013JQ0006, 2015 HH0016).
    [1]

    Tang X, Hu K A 2007 Mater. Sci. Eng. B 139 119

    [2]

    Han M G, Guo W, Wu Y H, Liu M, Hadimani M L 2014 Chin. Phys. B 23 083301

    [3]

    Zhong S L, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017501 (in Chinese) [钟顺林, 韩满贵, 邓龙江 2011 60 017501]

    [4]

    Kim S T, Kim S S 2012 IEEE Trans. Magn. 48 3494

    [5]

    Lee K S, Yun Y C, Kim S W, Kim S S 2008 J. Appl. Phys.103 07E504

    [6]

    Snoek J L 1948 Physica 14 207

    [7]

    Legarda F, Idoeta R 2001 Radiat. Phys. Chem. 61 549

    [8]

    Oskooi A, Johnson S G 2011 J. Comput. Phys. 230 2369

    [9]

    Liu X G, Geng D Y, Meng H, Shang P L, Zhang Z D 2008 Appl. Phys. Lett. 92 173117

    [10]

    Han M G, Liang D F, Deng L J 2011 Appl. Phys. Lett. 99 082503

    [11]

    Han M G, Liang D F, Rozanov K N, Deng L J 2013 IEEE Trans. Magn. 49 982

    [12]

    Liu Q L, Zhang D, Fan T X 2008 Appl. Phys. Lett. 93 013110

    [13]

    Chen W B, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017507 (in Chinese) [陈文兵, 韩满贵, 邓龙江 2011 60 017507]

    [14]

    Han M G, Guo W, Deng L J 2014 Sci. China Tech. Sci. 57 254

    [15]

    Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T, Li F S 2010 J. Appl. Phys. 107 033913

    [16]

    Wu Y H, Han M G, Tang Z K, Deng L J 2014 J. Appl. Phys. 115 163902

    [17]

    Deng L J, Zhou P H, Lu H P, Weng X L, Liang D F, Xie J L 2013 Mater. China 32 449 (in Chinese) [邓龙江, 周佩珩, 陆海鹏, 翁小龙, 梁迪飞, 谢建良 2013 中国材料进展 32 449]

    [18]

    Xiao J J, Sun C, Xue D S, Li F S 2001 Acta. Phys. Sin. 50 1605 (in Chinese) [肖君军, 孙超, 薛德胜, 李发伸 2001 50 1605]

    [19]

    Aharoni A 1996 Introduction to Ferromagnetism (New York: Oxford University Press) p31

    [20]

    Liao S B 1998 Ferromagnetism (Beijing: Science Press) pp6-139 (in Chinese) [廖绍彬 1998 铁磁学 (北京: 科学出版社)第 6–139 页]

    [21]

    Shao Q, Ku P S, Ruotolo A 2014 IEEE Trans. Magn. 50 1

    [22]

    Wan D F, Ma X L 1994 Physics of Magnetism (Chengdu: Publishing House of University of Electronic Science and Technology) p214 (in Chinese) [宛德福, 马兴隆 1994 磁性物理学(成都: 电子科技大学出版社)第214页]

  • [1]

    Tang X, Hu K A 2007 Mater. Sci. Eng. B 139 119

    [2]

    Han M G, Guo W, Wu Y H, Liu M, Hadimani M L 2014 Chin. Phys. B 23 083301

    [3]

    Zhong S L, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017501 (in Chinese) [钟顺林, 韩满贵, 邓龙江 2011 60 017501]

    [4]

    Kim S T, Kim S S 2012 IEEE Trans. Magn. 48 3494

    [5]

    Lee K S, Yun Y C, Kim S W, Kim S S 2008 J. Appl. Phys.103 07E504

    [6]

    Snoek J L 1948 Physica 14 207

    [7]

    Legarda F, Idoeta R 2001 Radiat. Phys. Chem. 61 549

    [8]

    Oskooi A, Johnson S G 2011 J. Comput. Phys. 230 2369

    [9]

    Liu X G, Geng D Y, Meng H, Shang P L, Zhang Z D 2008 Appl. Phys. Lett. 92 173117

    [10]

    Han M G, Liang D F, Deng L J 2011 Appl. Phys. Lett. 99 082503

    [11]

    Han M G, Liang D F, Rozanov K N, Deng L J 2013 IEEE Trans. Magn. 49 982

    [12]

    Liu Q L, Zhang D, Fan T X 2008 Appl. Phys. Lett. 93 013110

    [13]

    Chen W B, Han M G, Deng L J 2011 Acta. Phys. Sin. 60 017507 (in Chinese) [陈文兵, 韩满贵, 邓龙江 2011 60 017507]

    [14]

    Han M G, Guo W, Deng L J 2014 Sci. China Tech. Sci. 57 254

    [15]

    Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T, Li F S 2010 J. Appl. Phys. 107 033913

    [16]

    Wu Y H, Han M G, Tang Z K, Deng L J 2014 J. Appl. Phys. 115 163902

    [17]

    Deng L J, Zhou P H, Lu H P, Weng X L, Liang D F, Xie J L 2013 Mater. China 32 449 (in Chinese) [邓龙江, 周佩珩, 陆海鹏, 翁小龙, 梁迪飞, 谢建良 2013 中国材料进展 32 449]

    [18]

    Xiao J J, Sun C, Xue D S, Li F S 2001 Acta. Phys. Sin. 50 1605 (in Chinese) [肖君军, 孙超, 薛德胜, 李发伸 2001 50 1605]

    [19]

    Aharoni A 1996 Introduction to Ferromagnetism (New York: Oxford University Press) p31

    [20]

    Liao S B 1998 Ferromagnetism (Beijing: Science Press) pp6-139 (in Chinese) [廖绍彬 1998 铁磁学 (北京: 科学出版社)第 6–139 页]

    [21]

    Shao Q, Ku P S, Ruotolo A 2014 IEEE Trans. Magn. 50 1

    [22]

    Wan D F, Ma X L 1994 Physics of Magnetism (Chengdu: Publishing House of University of Electronic Science and Technology) p214 (in Chinese) [宛德福, 马兴隆 1994 磁性物理学(成都: 电子科技大学出版社)第214页]

  • [1] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向.  , 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] 刘想, 王希光, 李志雄, 郭光华. 铁磁畴壁中自旋极化电流诱导的左旋极化自旋波.  , 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [3] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式.  , 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [4] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应.  , 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [5] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [6] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟.  , 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [7] 张溪超, 赵国平, 夏静. 鸟类铁矿物磁受体中磁赤铁矿片晶链的微磁学分析.  , 2013, 62(21): 218702. doi: 10.7498/aps.62.218702
    [8] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜.  , 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [9] 顾文娟, 潘靖, 胡经国. 垂直场下磁性薄膜中的铁磁共振现象.  , 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [10] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性.  , 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [11] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波.  , 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [12] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质.  , 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [13] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质.  , 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [14] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [15] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟.  , 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [16] 陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根. Sm(Co,Cu,Fe,Zr)z反磁化过程的微磁学分析.  , 2004, 53(12): 4341-4346. doi: 10.7498/aps.53.4341
    [17] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究.  , 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [18] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究.  , 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [19] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性.  , 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究.  , 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  6013
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-27
  • 修回日期:  2015-08-19
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map