搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平螺旋管内超临界CO2冷却换热的数值模拟

徐肖肖 吴杨杨 刘朝 王开正 叶建

引用本文:
Citation:

水平螺旋管内超临界CO2冷却换热的数值模拟

徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建

Numerical study of cooling heat transfer of supercritical carbon dioxide in a horizontal helically coiled tube

Xu Xiao-Xiao, Wu Yang-Yang, Liu Chao, Wang Kai-Zheng, Ye Jian
PDF
导出引用
  • 采用RNG k-ε 湍流模型对超临界CO2流体在内径为4 mm, 长度2000 mm, 节距为10 mm, 曲率为0.1的水平螺旋管内的冷却换热进行了数值模拟.研究了质量流量、热流量以及压力对换热系数的影响, 并和超临界CO2在水平直管内的冷却换热进行了对比.研究结果表明, 超临界CO2在水平螺旋管内流动产生的二次流强于水平直管内的二次流, 前者的换热系数大于后者; 换热系数随质量流量的增加而增大; 在似气体区, 换热系数随着热流量的增加而增大, 而在似液体区, 热流量对换热系数几乎没有影响; 换热系数峰值点随着压力的升高而下降, 并向高温区偏移.
    In the present study, cooling heat transfer of supercritical CO2 in a horizontal helically coiled-tube 4 mm in diameter, 2000 mm in length, a pitch of 10 mm and 0.1 in curvature is numerically investigated with RNG turbulence model. Influences of mass flow rate, heat flux and pressure on heat transfer of supercritical CO2 are studied. The characteristics of the flow and heat transfer are compared with those in a horizontal straight tube. Results show that the secondary flow and heat transfer coefficient in a helically coiled tube is obviously larger than in a horizontal straight tube. The heat transfer coefficient of supercritical CO2 increases with increasing mass flow rate, and the heat transfer coefficient increases slightly as the heat flux increases in the gas-like region, while the heat transfer coefficient is unaffected by heat flux in the liquid-like region. The peak of the heat transfer coefficient decreases and shifts to a higher temperature region as the pressure increases.
    • 基金项目: 国家自然科学基金(批准号: 51206197)、中央高校基本科研业务费专项资金(批准号: CDJZR12140032)和重庆市自然科学基金(批准号: CSTC2011BB6094)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51206197), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. CDJZR12140032), and the Natural Science Foundation of Chongqing, China (Grant No. CSTC2011BB6094).
    [1]

    Wang L L, Ma Y T, Li M X, Gong W J 2009 J. Eng. Thermophys. 30 1811 (in Chinese) [汪琳琳, 马一太, 李敏霞, 龚文谨 2009 工程热 30 1811]

    [2]

    Yan K F, Li X S, Chen Z Y, Xu C G 2010 Acta Phys. Sin. 59 4313 (in Chinese) [颜克凤, 李小森, 陈朝阳, 徐纯钢 2010 59 4313]

    [3]

    Luo B Y, Lu Y G 2008 Acta Phys. Sin. 57 4397 (in Chinese) [罗奔毅, 卢毅刚 2008 57 4397]

    [4]

    Liao S M, Zhao T S 2002 J. Heat Transfer 124 413

    [5]

    Bae Y Y, Kim H Y 2009 Exp. Therm Fluid Sci. 33 329

    [6]

    Bae Y Y, Kim H Y 2010 Exp. Therm Fluid Sci. 34 1295

    [7]

    Bae Y Y, Kim H Y 2011 Int. J. Heat Fluid Flow 32 340

    [8]

    Jiang P X, Zhang Y, Xu Y J, Shi R F 2008 Int. J. Thermal Sci. 47 998

    [9]

    Jiang P X, Zhang Y, Zhao C R, Shi R F 2008 Exp. Therm Fluid Sci. 32 1628

    [10]

    Du Z X, Lin W S, Gu A Z 2010 J. Supercrit. Fluids 55 116

    [11]

    Yang C Y, Xu J L, Wang X D, Zhang W 2013 Int. J. Heat Mass Transfer 64 212

    [12]

    Wang S X, Niu Z Y, Xu J L 2013 J. Chem. Ind. Eng. 64 3917 (in Chinese) [王淑香, 牛志愿, 徐进良 2013 化工学报 64 3917]

    [13]

    Liu D Y, Wang Y W, Wang X, He K, Zhang X J, Yang C X 2012 Acta Phys. Sin. 61 150506 (in Chinese) [刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信 2012 61 150506]

    [14]

    Shao L, Han J T, Pan J H 2007 J. Refrigeration 28 23 (in Chinese) [邵莉, 韩吉田, 潘继红 2007 制冷学报 28 23]

    [15]

    Fu C F, Wei Y Y, Duan Z Y, Wang W X, Duan Y B 2009 Chin.Phys.B 18 2749

    [16]

    Liberto D M, Ciofalo M 2013 Int. J. Heat Mass Transfer 59 112

    [17]

    Lin C X, Ebadian M A 1999 Int. J. Heat Mass Transfer 42 739

    [18]

    Shao L, Han J T 2007 J. Hydrodynamics, Ser. B 19 677

    [19]

    Mao Y F, Guo L J, Bai B F, Zhang X M 2010 Front. Energy Power Eng. China 4 546

    [20]

    Dittus F W, Boelter L M K 1930 Univ. Calif. Publ. Eng. 2 443

    [21]

    Xu X X, Chen G M, Tang L M, Zhu Z J 2011 Int. J. Energy Res. 35 1266

  • [1]

    Wang L L, Ma Y T, Li M X, Gong W J 2009 J. Eng. Thermophys. 30 1811 (in Chinese) [汪琳琳, 马一太, 李敏霞, 龚文谨 2009 工程热 30 1811]

    [2]

    Yan K F, Li X S, Chen Z Y, Xu C G 2010 Acta Phys. Sin. 59 4313 (in Chinese) [颜克凤, 李小森, 陈朝阳, 徐纯钢 2010 59 4313]

    [3]

    Luo B Y, Lu Y G 2008 Acta Phys. Sin. 57 4397 (in Chinese) [罗奔毅, 卢毅刚 2008 57 4397]

    [4]

    Liao S M, Zhao T S 2002 J. Heat Transfer 124 413

    [5]

    Bae Y Y, Kim H Y 2009 Exp. Therm Fluid Sci. 33 329

    [6]

    Bae Y Y, Kim H Y 2010 Exp. Therm Fluid Sci. 34 1295

    [7]

    Bae Y Y, Kim H Y 2011 Int. J. Heat Fluid Flow 32 340

    [8]

    Jiang P X, Zhang Y, Xu Y J, Shi R F 2008 Int. J. Thermal Sci. 47 998

    [9]

    Jiang P X, Zhang Y, Zhao C R, Shi R F 2008 Exp. Therm Fluid Sci. 32 1628

    [10]

    Du Z X, Lin W S, Gu A Z 2010 J. Supercrit. Fluids 55 116

    [11]

    Yang C Y, Xu J L, Wang X D, Zhang W 2013 Int. J. Heat Mass Transfer 64 212

    [12]

    Wang S X, Niu Z Y, Xu J L 2013 J. Chem. Ind. Eng. 64 3917 (in Chinese) [王淑香, 牛志愿, 徐进良 2013 化工学报 64 3917]

    [13]

    Liu D Y, Wang Y W, Wang X, He K, Zhang X J, Yang C X 2012 Acta Phys. Sin. 61 150506 (in Chinese) [刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信 2012 61 150506]

    [14]

    Shao L, Han J T, Pan J H 2007 J. Refrigeration 28 23 (in Chinese) [邵莉, 韩吉田, 潘继红 2007 制冷学报 28 23]

    [15]

    Fu C F, Wei Y Y, Duan Z Y, Wang W X, Duan Y B 2009 Chin.Phys.B 18 2749

    [16]

    Liberto D M, Ciofalo M 2013 Int. J. Heat Mass Transfer 59 112

    [17]

    Lin C X, Ebadian M A 1999 Int. J. Heat Mass Transfer 42 739

    [18]

    Shao L, Han J T 2007 J. Hydrodynamics, Ser. B 19 677

    [19]

    Mao Y F, Guo L J, Bai B F, Zhang X M 2010 Front. Energy Power Eng. China 4 546

    [20]

    Dittus F W, Boelter L M K 1930 Univ. Calif. Publ. Eng. 2 443

    [21]

    Xu X X, Chen G M, Tang L M, Zhu Z J 2011 Int. J. Energy Res. 35 1266

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响.  , 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [3] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究.  , 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [4] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析.  , 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [5] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化.  , 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [6] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟.  , 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [7] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析.  , 2021, (): . doi: 10.7498/aps.70.20211464
    [8] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析.  , 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [9] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响.  , 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [10] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [11] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究.  , 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [12] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟.  , 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [13] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [14] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟.  , 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [15] 王晓南, 邸洪双, 梁冰洁, 夏小明. 热连轧粗轧调宽轧制过程边角部金属流动三维数值模拟.  , 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [16] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析.  , 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [17] 付东, 王学敏, 刘建岷. 超临界二氧化碳和模型共聚物的相平衡和成核性质研究.  , 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [18] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [19] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速.  , 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [20] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟.  , 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
计量
  • 文章访问数:  7498
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2014-08-28
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map