搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拟沸腾理论的超临界CO2管内传热恶化量纲分析

张海松 徐进良 朱鑫杰

引用本文:
Citation:

基于拟沸腾理论的超临界CO2管内传热恶化量纲分析

张海松, 徐进良, 朱鑫杰

Dimensional analysis of flow and heat transfer of supercritical CO2 based on pseudo-boiling theory

Zhang Hai-Song, Xu Jin-Liang, Zhu Xin-Jie
PDF
HTML
导出引用
  • 超临界流体广泛应用于工程技术领域, 其流动传热特性对工程设计具有重要意义, 但是, 由于超临界流体的物理微观和宏观行为的机理尚不清晰, 所以其异常的流动传热特性并未得到很好的解决. 普遍认为超临界流体在分子尺度上可分为类气和类液两种不同的特性, 直到最近通过实验在宏观上监测到超临界水类液和类气之间的转变, 且这一过程与拟沸腾理论一致, 使得问题逐渐变得清晰. 本文基于拟沸腾理论对超临界CO2异常流动传热行为进行了研究, 在假设类液和类气转换过程不均匀的情况下, 从经典的量纲分析和亚临界过冷沸腾理论模型出发, 提出了一个适用于超临界流体拟沸腾换热过程的分析方法. 通过引入表征类气膜生长速度与流体主流平均流速之比π = (qw·ρl)/(G·Δi·ρg)和表征近壁区类气膜温度梯度π13 = (qw·βpc·di)/λg两个无量纲数, 来表征拟沸腾如何导致传热恶化, 解释了超临界CO2竖直向上加热流动过程中的异常换热特性, 即较大的类气膜生长速度使近壁区快速聚集了较多的高温流体, 而较大的类气膜温度梯度使类气膜覆盖在壁面. 当核心的冷类液不能充分润湿热壁面时, 传热恶化. 新无量纲数较好的诠释了超临界流体拟沸腾诱导传热恶化机制, 为超临界拟沸腾传热研究提供了理论依据.
    Supercritical fluids are widely used in engineering technology, and the flow and heat transfer characteristics are very important for engineering design. However, due to the fact that the physical micro- and macroscopic behaviors of supercritical fluids are still open, neither the heat transfer mechanism nor the flow mechanism of supercritical fluids has been well revealed. It is widely believed that liquid-like (LL) and gas-like (GL) supercritical fluid are two phases distinguishable on a molecular scale. Only recently, has it become clear that the macroscopic transition from LL to GL supercritical state, when crossing the Widomline, is successfully detected in experiment, and explained based on the pseudo-boiling concept. In this paper, the abnormal flow and heat transfer behavior of supercritical CO2 are studied based on the pseudo-boiling theory. On the assumption that the transition from LL to GL is heterogeneous, an analysis method for pseudo-boiling heat transfer is developed from classical dimensional analysis and subcritical subcooled boiling theory of models. To analyze the pseudo-boiling resulting in heat transfer deterioration process of supercritical fluid, two dimensionless numbers which are π = (qw·ρl)/(G·Δi·ρg) and π13 = (qw·βpc·di)/λg are proposed to explain the anomalous heat transfer characteristics in vertical upward heating flow. The former π reflects the rate of conversion between gas-like and liquid-like fluid. The larger gas-like conversion rate promotes the rapid production of more high-temperature fluid in the near-wall region, and the latter π13 characterizes the temperature gradient of gas-like film near the wall: the larger temperature gradient causes the gas film to cover the wall surface. The heat transfer deterioration may occur when the cooler liquid-like fluid of the core region cannot rewet the hot wall adequately. The new dimensionless numbers can successfully explain the heat transfer deterioration of supercritical fluid flow induced by pseudo-boiling. Our work paves the way to understanding the heat transfer and flow for supercritical fluids which establishes a relation among the internal flow, heat transfer field characteristics, boundary conditions and physical properties based on the pseudo-boiling theory preliminarily. The results of dimensional analysis can be applied to the similarity theory analysis of different fluids, which is of significance for promoting the theoretical research of supercritical fluid heat transfer on the basis of pseudo-boiling concept.
      通信作者: 徐进良, xjl@ncepu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0601801)和中央高校基本科研业务费专项资金(批准号:2019QN032)资助的课题
      Corresponding author: Xu Jin-Liang, xjl@ncepu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0601801) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019QN032)
    [1]

    Tsai W C, Wang Y 2019 Prog. Polym. Sci. 98 101161Google Scholar

    [2]

    Knez Z, Markocic E 2014 Energy 77 235Google Scholar

    [3]

    Pizzarelli M 2018 Int. Commun. Heat Mass Transf. 95 132Google Scholar

    [4]

    Wang H, Leungc L K H, Wang W S, Bi Q C 2018 Appl. Therm. Eng. 142 573Google Scholar

    [5]

    Knapp K K, Sabersky R H 1966 Int. J. Heat Mass Transf. 9 41Google Scholar

    [6]

    Ackerman J W 1970 J. of Heat Transfer 92 490Google Scholar

    [7]

    Stewart E, Stewart P, Watson A 1973 Int. J. Heat Mass Transfer 16 257Google Scholar

    [8]

    Ambrosini W 2007 Nucl. Eng. Des. 237 1164Google Scholar

    [9]

    Ma T, Wang S H 2011 AIP Advances 1 042101Google Scholar

    [10]

    Simeoni G G, Bryk T, Gorelli F A, Krisch M, Ruocco G, Santoro M, Scopigno T 2010 Nat. Phys. 6 503Google Scholar

    [11]

    Ha M Y, Yoon T J, Tlusty T, Jho Y, Lee W B 2018 J. Phys. Chem. Lett. 9 1734Google Scholar

    [12]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [13]

    Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 1Google Scholar

    [14]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254Google Scholar

    [15]

    Xu J L, Zhang H S, Zhu B G, Xie J 2020 Sol. Energy 195 27Google Scholar

    [16]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 6 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 6 064401Google Scholar

    [17]

    Yildiz S, Groeneveld D C 2014 Int. Commun. Heat Mass Transf. 54 27Google Scholar

    [18]

    张思宇 2015 博士学位论文 (上海: 上海交通大学)

    Zhang S Y 2015 Ph. D. Dissertation(Shanghai: Shanghai Jiaotong University) (in Chinese)

    [19]

    Kang K H, Chang S H 2009 Int. J. Heat Mass Transfer 52 4946Google Scholar

    [20]

    Yamashita T, Yoshida S, Mori H, Morooka S, Komita H 2003 GENES4/ANP2003, Kyoto, Japan., Sep. 15–19, 2003 1119

    [21]

    Lei X L, Li H X, Zhang W Q, Dinh N T, Guo Y M, Yu S Q 2017 Appl. Therm. Eng. 113 609Google Scholar

    [22]

    Shen Z, Yang D, Chen G M, Xiao F 2014 Int. J. Heat Mass Transfer 68 669Google Scholar

    [23]

    Buckingham E 1914 Phys. Rev. 4 345

    [24]

    罗峰, 胥蕊娜, 姜培学 2014 工程热 6 1170

    Luo F, Xu R N, Jiang P X 2014 J. Eng. Thermophysics 6 1170

    [25]

    刘生晖, 黄彦平, 刘光旭, 王俊峰, 王金宇 2019 核动力工程 40 18Google Scholar

    Liu S H, Huang Y P, Liu G X, Wang J F, Wang J Y 2019 Nucl. Power Engineering 40 18Google Scholar

    [26]

    廖长江, 李会雄 2015 工程热 1 111

    Liao C J, Li H X 2015 J. Eng. Thermophysics 1 111

  • 图 1  不同压力下的SCF穿越WL的物性变化

    Fig. 1.  The physical properties of SCF crossing WL under different pressures.

    图 2  不同压力下的CO2密度随温度变化分布

    Fig. 2.  Density of CO2 varies with temperature under different pressures.

    图 3  超临界CO2拟沸腾相变焓Δi定义和跨越温差ΔT

    Fig. 3.  Defining pseudo-boiling enthalpy Δi and temperature span ΔT of S-CO2 during pseudo-boiling.

    图 4  不同参数下CO2内壁温随焓值变化分布

    Fig. 4.  The inner wall temperature distribution of S-CO2 with enthalpy under varies parameters.

    图 5  亚临界DNB (黑色)和超临界压力下传热恶化壁温(红色)分布对比

    Fig. 5.  Comparison of wall temperature distribution subcritical DNB (black) and supercritical heat transfer deterioration (red).

    图 6  不同超临界流体在正常传热和恶化传热过程中的Twi/TpcTb/Tpc随焓值变化分布

    Fig. 6.  Distribution of Twi/Tpc and Tb/Tpc with enthalpy during normal heat transfer (NHT) and heat transfer deterioration(HTD)of different supercritical fluids.

    图 7  正常和恶化传热下类气膜内的温度梯度和内壁温随焓值分布

    Fig. 7.  Distribution of temperature gradients and inner wall temperature with enthalpy in gas-like film under normal heat transfer(NHT) and heat transfer deterioration(HTD).

    图 8  正常传热和恶化传热下的新无量纲数π、内壁温Twi和换热系数h随焓值分布

    Fig. 8.  Distribution of the new dimensionless numberπ, inner wall temperature Twi and heat transfer coefficient h with enthalpy under normal heat transfer (NHT) and deteriorated heat transfer (HTD).

    图 9  新无量纲数作用超临界流体拟沸腾传热恶化机制

    Fig. 9.  New dimensionless action on number deterioration of pseudo-boiling heat transfer mechanism.

    Baidu
  • [1]

    Tsai W C, Wang Y 2019 Prog. Polym. Sci. 98 101161Google Scholar

    [2]

    Knez Z, Markocic E 2014 Energy 77 235Google Scholar

    [3]

    Pizzarelli M 2018 Int. Commun. Heat Mass Transf. 95 132Google Scholar

    [4]

    Wang H, Leungc L K H, Wang W S, Bi Q C 2018 Appl. Therm. Eng. 142 573Google Scholar

    [5]

    Knapp K K, Sabersky R H 1966 Int. J. Heat Mass Transf. 9 41Google Scholar

    [6]

    Ackerman J W 1970 J. of Heat Transfer 92 490Google Scholar

    [7]

    Stewart E, Stewart P, Watson A 1973 Int. J. Heat Mass Transfer 16 257Google Scholar

    [8]

    Ambrosini W 2007 Nucl. Eng. Des. 237 1164Google Scholar

    [9]

    Ma T, Wang S H 2011 AIP Advances 1 042101Google Scholar

    [10]

    Simeoni G G, Bryk T, Gorelli F A, Krisch M, Ruocco G, Santoro M, Scopigno T 2010 Nat. Phys. 6 503Google Scholar

    [11]

    Ha M Y, Yoon T J, Tlusty T, Jho Y, Lee W B 2018 J. Phys. Chem. Lett. 9 1734Google Scholar

    [12]

    Banuti D T 2015 J. Supercrit. Fluids 98 12Google Scholar

    [13]

    Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C 2019 Nat. Commun. 10 1Google Scholar

    [14]

    Zhu B G, Xu J L, Wu X M, Xie J, Li M J 2019 J Int. J. Therm. Sci. 136 254Google Scholar

    [15]

    Xu J L, Zhang H S, Zhu B G, Xie J 2020 Sol. Energy 195 27Google Scholar

    [16]

    张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢 2020 6 064401Google Scholar

    Zhang H S, Zhu X J, Zhu B G, Xu J L, Liu H 2020 Acta Phys. Sin. 6 064401Google Scholar

    [17]

    Yildiz S, Groeneveld D C 2014 Int. Commun. Heat Mass Transf. 54 27Google Scholar

    [18]

    张思宇 2015 博士学位论文 (上海: 上海交通大学)

    Zhang S Y 2015 Ph. D. Dissertation(Shanghai: Shanghai Jiaotong University) (in Chinese)

    [19]

    Kang K H, Chang S H 2009 Int. J. Heat Mass Transfer 52 4946Google Scholar

    [20]

    Yamashita T, Yoshida S, Mori H, Morooka S, Komita H 2003 GENES4/ANP2003, Kyoto, Japan., Sep. 15–19, 2003 1119

    [21]

    Lei X L, Li H X, Zhang W Q, Dinh N T, Guo Y M, Yu S Q 2017 Appl. Therm. Eng. 113 609Google Scholar

    [22]

    Shen Z, Yang D, Chen G M, Xiao F 2014 Int. J. Heat Mass Transfer 68 669Google Scholar

    [23]

    Buckingham E 1914 Phys. Rev. 4 345

    [24]

    罗峰, 胥蕊娜, 姜培学 2014 工程热 6 1170

    Luo F, Xu R N, Jiang P X 2014 J. Eng. Thermophysics 6 1170

    [25]

    刘生晖, 黄彦平, 刘光旭, 王俊峰, 王金宇 2019 核动力工程 40 18Google Scholar

    Liu S H, Huang Y P, Liu G X, Wang J F, Wang J Y 2019 Nucl. Power Engineering 40 18Google Scholar

    [26]

    廖长江, 李会雄 2015 工程热 1 111

    Liao C J, Li H X 2015 J. Eng. Thermophysics 1 111

  • [1] 周文力, 卓伟伟, 蒋依然, 马文杰, 董宝君. 水平管内超临界R1234ze(E)冷却传热性能的神经网络预测.  , 2024, 73(12): 120702. doi: 10.7498/aps.73.20240283
    [2] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [3] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [4] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响.  , 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [5] 张海松, 卢茂聪, 李志刚. 基于膨胀效应的超临界CO2类沸腾临界点模型.  , 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [6] 胡剑, 张森, 娄钦. 电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究.  , 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [7] 何孝天, 徐进良, 程怡玮. 光纤探针测量及多尺度熵鉴别超临界类沸腾传热模式.  , 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [8] 刘联胜, 刘轩臣, 贾文琪, 田亮, 杨华, 段润泽. 小液滴撞击壁面传热特性数值分析.  , 2021, 70(7): 074402. doi: 10.7498/aps.70.20201354
    [9] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究.  , 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [10] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析.  , 2021, (): . doi: 10.7498/aps.70.20211464
    [11] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟.  , 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [12] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析.  , 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [13] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响.  , 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [14] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [15] 王敏锐, 蔡廷栋. 1.5μm处CO2与CO高温线强的实验分析与理论计算.  , 2015, 64(21): 213301. doi: 10.7498/aps.64.213301
    [16] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟.  , 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [17] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析.  , 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [18] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析.  , 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [19] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析.  , 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [20] 高智, 林烈, 孙文超. 横流放电CO2激光的理论分析.  , 1979, 28(6): 807-823. doi: 10.7498/aps.28.807
计量
  • 文章访问数:  7219
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-10-08
  • 上网日期:  2021-02-06
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map