-
Bi2O2Se是一种新型半导体材料, 具有载流子迁移率高、空气中稳定和自旋轨道耦合强等优点, 并且其合成方法多种多样, 应用范围十分广泛. 但已有研究大多集中在其二维薄膜, 本文介绍一种使用三温区管式炉通过化学气相沉积生长Bi2O2Se一维纳米线的方法, 研究了云母衬底处于水平方向不同位置以及竖直方向不同高度对Bi2O2Se纳米线生长的影响, 并归纳出适于其生长的优化条件. 之后, 基于生长的Bi2O2Se纳米线构建了超导量子干涉器件, 并观测到随磁场的超导量子干涉, 为拓宽Bi2O2Se纳米线的应用提供了思路.
-
关键词:
- Bi2O2Se纳米线 /
- 化学气相沉积 /
- 超导量子干涉器
Bi2O2Se is a new type of semiconductor material, which has the advantages of high carrier mobility, air stability, strong spin-orbit coupling, etc. It has a variety of synthesis methods and a wide range of applications. In the past few years, many explorations have been made in the synthesis, large-size growth, and applications of Bi2O2Se. It has been applied to field effect transistors, infrared photodetectors, semiconductor devices, heterojunctions, spin electronics, etc. Since nanowire has a larger surface area-to-volume ratio than nano-film, nanowire may have greater advantages in gate regulation and strong spin-orbit coupling, and these properties can play a crucial role in certain fields. However, most of the studies focused on its two-dimensional films, and there are less researches of its one-dimensional counterpart. In this work, a method of growing Bi2O2Se one-dimensional nanowires by chemical vapor deposition in a three-temperature-zone tubular furnace is introduced. High-quality suspended Bi2O2Se nanowires are obtained. In addition, the effects on the Bi2O2Se nanowire growth of the position of the mica substrates, i.e, different horizontal positions and vertical heights in the quartz boat, are studied, and the optimal conditions for the growth are summarized. The nanowires are characterized by atomic force microscope and energy dispersive spectrometer to show the information about the size and component. Then, superconducting quantum interference device based on the Bi2O2Se nanowires is constructed, and the superconducting quantum interference in a magnetic field is observed, which provides a way to broaden the application of Bi2O2Se nanowires.-
Keywords:
- Bi2O2Se nanowires /
- chemical vapor deposition /
- superconducting quantum interference devices
[1] Wu J X, Yuan H T, Meng M M, Chen C, Sun Y, Chen Z Y, Dang W H, Tan C W, Liu Y J, Yin J B, Zhou Y B, Huang S Y, Xu H Q, Cui Y, Hwang H Y, Liu Z F, Chen Y L, Yan B H, Peng H L 2017 Nat. Nanotechnol. 12 530Google Scholar
[2] Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M, Peng H 2017 Nano Lett. 17 3021Google Scholar
[3] Zhao K, Liu H, Tan C, Xiao J, Shen J, Liu G, Peng H, Lu L, Qu F 2022 Appl. Phys. Lett. 121 212104Google Scholar
[4] Wu J X, Liu Y J, Tan Z, Tan C, Yin J B, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060Google Scholar
[5] Meng M M, Huang S Y, Tan C, Wu J X, Jing Y, Peng H, Xu H Q 2018 Nanoscale 10 2704Google Scholar
[6] Meng M M, Huang S Y, Tan C, Wu J X, Li X, Peng H, Xu H Q 2019 Nanoscale 11 10622Google Scholar
[7] Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar
[8] Xu S, Fu H, Tian Y, Deng T, Cai J, Wu J, Tu T, Li T, Tan C, Liang Y, Zhang C, Liu Z, Liu Z, Chen Y, Jiang Y, Yan B, Peng H 2020 Angew. Chem. Int. Ed. 59 17938Google Scholar
[9] Hong C Y, Tao Y, Nie A M, Zhang M H, Wang N, Li R P, Huang J Q, Huang Y Q, Ren X M, Cheng Y C, Liu X L 2020 ACS Nano 14 16803Google Scholar
[10] Song Y, Li Z, Li H, Tang S, Mu G, Xu L, Peng W, Shen D, Chen Y, Xie X, Jiang M 2020 Nanotechnology 31 165704Google Scholar
[11] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703Google Scholar
[12] Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar
[13] Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar
[14] Liu S, Tan C, He D, Wang Y, Peng H, Zhao H 2020 Adv. Optical Mater. 8 1901567Google Scholar
[15] Zou X, Sun Y, Wang C 2022 Small Methods 6 2200347Google Scholar
[16] Khan U, Nairan A, Khan K, Li S, Liu B, Gao J 2022 Small 19 2206648Google Scholar
[17] Khan U, Tang L, Ding B, Yuting L, Feng S, Chen W, Khan M J, Liu B, Cheng H M 2021 Adv. Funct. Mater. 31 2101170Google Scholar
[18] Yu J, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar
[19] Mao Q, Geng X, Yang J, Zhang J, Zhu S, Yu Q, Wang Y, Li H, Li R, Hao H 2018 J. Cryst. Growth. 498 244Google Scholar
[20] Kim M, Park D, Kim J 2021 J. Alloy. Compd. 851 156905Google Scholar
[21] Li J, Wang Z, Chu J, Cheng Z, He P, Wang J, Yin L, Cheng R, Li N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar
[22] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2010 Nat. Phys. 7 109Google Scholar
[23] Quhe R, Liu J, Wu J, Yang J, Wang Y, Li Q, Li T, Guo Y, Yang J, Peng H, Lei M, Lu J 2019 Nanoscale 11 532Google Scholar
[24] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311Google Scholar
[25] Fan C, Dai B, Liang H, Xu X, Qi Z, Jiang H, Duan H, Zhang Q 2021 Adv. Funct. Mater. 31 2010263Google Scholar
[26] Jiang K, Hu J 2022 Nat. Phys. 18 1145Google Scholar
[27] Mayer W, Dartiailh M C, Yuan J, Wickramasinghe K S, Rossi E, Shabani J 2020 Nat. Commun. 11 212Google Scholar
[28] Fukaya Y, Tanaka Y, Gentile P, Yada K, Cuoco M 2022 npj Quantum Mater. 7 99Google Scholar
[29] Jiang D, Yu D Y, Zheng Z, Cao X C, Lin Q, Liu W M 2022 Acta Phys. Sin. 71 160302Google Scholar
[30] Frolov S M, Manfra M J, Sau J D 2020 Nat. Phys. 16 718Google Scholar
[31] Breunig O, Ando Y 2021 Nat. Rev. Phys. 4 184Google Scholar
[32] Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner G C, Manfra M J, Tarucha S 2023 Nat. Phys. 19 1636Google Scholar
[33] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar
[34] Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P 2023 Nature 614 445Google Scholar
[35] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557Google Scholar
[36] Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schröter N B M, Fu L, Parkin S S P 2022 Nat. Phys. 18 1228Google Scholar
[37] Chen A Q, Park M J, Gill S T, Xiao Y R, Reigi-Plessis D, MacDougall G J, Gilbert M J, Mason N 2018 Nat. Commun. 9 3478Google Scholar
-
图 1 (a)三温区管式炉的示意图, Bi2Se3粉末放置在温区A的中央, Bi2O3粉末放置在温区C的中央, 带有云母衬底的石英舟放置在管式炉的右边缘. (b), (c)带有云母衬底的石英舟的示意图和光学照片
Fig. 1. (a) Schematic diagram of the three-temperature-zone tubular furnace, with Bi2Se3 powder placed at the center of zone A and Bi2O3 powder at the center of zone C, a quartz boat with mica substrates is placed at the right edge of the quartz tube. (b), (c) Schematic diagram and optical photograph of a quartz boat with mica substrates, respectively.
图 2 不同水平位置的云母衬底生长的Bi2O2Se光学显微镜照片和SEM照片 (a), (c), (e)对应2号、4号和5号云母衬底生长Bi2O2Se后的光学显微镜照片; (b), (d), (f)对应2号、4号和5号云母衬底生长Bi2O2Se后的SEM照片
Fig. 2. Optical microscope photos and SEM photos of Bi2O2Se grown on mica substrates at different horizontal positions: (a), (c), (e) Optical microscope photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively; (b), (d), (f) SEM photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively.
图 4 (a), (b) Bi2O2Se纳米线的AFM表征; (c) Bi2O2Se纳米线的EDS能谱; (d)使用Bi2O2Se纳米线制备的SQUID的SEM照片; (e) SQUID的dV/dI-Ib曲线; (d) SQUID干涉图案
Fig. 4. (a), (b) AFM characterization of Bi2O2Se nanowire; (c) EDS spectra of Bi2O2Se nanowire; (d) SEM images of SQUID device; (e) dV/dI-Ib curve of SQUID; (f) SQUID interference pattern.
表 1 Bi2O2Se纳米线的生长步骤
Table 1. Growth steps of Bi2O2Se nanowires.
步骤 第1步 第2步 第3步 第4步 温区A
(Bi2Se3)温度/℃ 室温—100 100—580 580 580—室温 时间/min 5 25 30 — 温区B 温度/℃ 室温—100 100—610 610 610—室温 时间/min 5 30 25 — 温区C
(Bi2O3)温度/℃ 室温—100 100—630 630 630—室温 时间/min 5 30 25 — -
[1] Wu J X, Yuan H T, Meng M M, Chen C, Sun Y, Chen Z Y, Dang W H, Tan C W, Liu Y J, Yin J B, Zhou Y B, Huang S Y, Xu H Q, Cui Y, Hwang H Y, Liu Z F, Chen Y L, Yan B H, Peng H L 2017 Nat. Nanotechnol. 12 530Google Scholar
[2] Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M, Peng H 2017 Nano Lett. 17 3021Google Scholar
[3] Zhao K, Liu H, Tan C, Xiao J, Shen J, Liu G, Peng H, Lu L, Qu F 2022 Appl. Phys. Lett. 121 212104Google Scholar
[4] Wu J X, Liu Y J, Tan Z, Tan C, Yin J B, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060Google Scholar
[5] Meng M M, Huang S Y, Tan C, Wu J X, Jing Y, Peng H, Xu H Q 2018 Nanoscale 10 2704Google Scholar
[6] Meng M M, Huang S Y, Tan C, Wu J X, Li X, Peng H, Xu H Q 2019 Nanoscale 11 10622Google Scholar
[7] Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar
[8] Xu S, Fu H, Tian Y, Deng T, Cai J, Wu J, Tu T, Li T, Tan C, Liang Y, Zhang C, Liu Z, Liu Z, Chen Y, Jiang Y, Yan B, Peng H 2020 Angew. Chem. Int. Ed. 59 17938Google Scholar
[9] Hong C Y, Tao Y, Nie A M, Zhang M H, Wang N, Li R P, Huang J Q, Huang Y Q, Ren X M, Cheng Y C, Liu X L 2020 ACS Nano 14 16803Google Scholar
[10] Song Y, Li Z, Li H, Tang S, Mu G, Xu L, Peng W, Shen D, Chen Y, Xie X, Jiang M 2020 Nanotechnology 31 165704Google Scholar
[11] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703Google Scholar
[12] Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar
[13] Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar
[14] Liu S, Tan C, He D, Wang Y, Peng H, Zhao H 2020 Adv. Optical Mater. 8 1901567Google Scholar
[15] Zou X, Sun Y, Wang C 2022 Small Methods 6 2200347Google Scholar
[16] Khan U, Nairan A, Khan K, Li S, Liu B, Gao J 2022 Small 19 2206648Google Scholar
[17] Khan U, Tang L, Ding B, Yuting L, Feng S, Chen W, Khan M J, Liu B, Cheng H M 2021 Adv. Funct. Mater. 31 2101170Google Scholar
[18] Yu J, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar
[19] Mao Q, Geng X, Yang J, Zhang J, Zhu S, Yu Q, Wang Y, Li H, Li R, Hao H 2018 J. Cryst. Growth. 498 244Google Scholar
[20] Kim M, Park D, Kim J 2021 J. Alloy. Compd. 851 156905Google Scholar
[21] Li J, Wang Z, Chu J, Cheng Z, He P, Wang J, Yin L, Cheng R, Li N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar
[22] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2010 Nat. Phys. 7 109Google Scholar
[23] Quhe R, Liu J, Wu J, Yang J, Wang Y, Li Q, Li T, Guo Y, Yang J, Peng H, Lei M, Lu J 2019 Nanoscale 11 532Google Scholar
[24] Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311Google Scholar
[25] Fan C, Dai B, Liang H, Xu X, Qi Z, Jiang H, Duan H, Zhang Q 2021 Adv. Funct. Mater. 31 2010263Google Scholar
[26] Jiang K, Hu J 2022 Nat. Phys. 18 1145Google Scholar
[27] Mayer W, Dartiailh M C, Yuan J, Wickramasinghe K S, Rossi E, Shabani J 2020 Nat. Commun. 11 212Google Scholar
[28] Fukaya Y, Tanaka Y, Gentile P, Yada K, Cuoco M 2022 npj Quantum Mater. 7 99Google Scholar
[29] Jiang D, Yu D Y, Zheng Z, Cao X C, Lin Q, Liu W M 2022 Acta Phys. Sin. 71 160302Google Scholar
[30] Frolov S M, Manfra M J, Sau J D 2020 Nat. Phys. 16 718Google Scholar
[31] Breunig O, Ando Y 2021 Nat. Rev. Phys. 4 184Google Scholar
[32] Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner G C, Manfra M J, Tarucha S 2023 Nat. Phys. 19 1636Google Scholar
[33] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar
[34] Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P 2023 Nature 614 445Google Scholar
[35] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557Google Scholar
[36] Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schröter N B M, Fu L, Parkin S S P 2022 Nat. Phys. 18 1228Google Scholar
[37] Chen A Q, Park M J, Gill S T, Xiao Y R, Reigi-Plessis D, MacDougall G J, Gilbert M J, Mason N 2018 Nat. Commun. 9 3478Google Scholar
计量
- 文章访问数: 2059
- PDF下载量: 122
- 被引次数: 0