-
基于EAST托卡马克装置高性能极紫外空间分辨杂质光谱仪, 本文首次开展了磁约束聚变装置高Z杂质上下不对称分布的实验研究. 实验结果显示, 在同向中性束注入期间, 等离子体芯部环向旋转速度Vt0较大, 钨杂质上下不对称性较强, 且辐射(密度)较强的一侧背离离子
$B\times \nabla B$ 漂移方向; 当从上外偏滤器充气口注入氘化甲烷气体后, Vt0迅速下降, 原有上下不对称性发生反转. 因此我们针对近似条件下W32+杂质离子特征线辐射不对称因子Iu/Id与Vt0依赖关系开展了进一步的统计分析. 结果表明, Iu/Id正相关于Vt0, 当Vt0 < 20 km/s以下时, 不对称性发生反转. 上述现象从实验角度验证了漂移动理学的理论预测, 说明环向旋转带来的离心力影响了杂质离子平行于磁场方向的动量守恒, 作为直接诱因, 造成了高Z杂质密度的上下不对称分布, 进而影响辐射的分布. 本文对钨杂质上下不对称性分布的实验观测为进一步开展高Z杂质极向输运的机理研究打下了坚实的基础, 并为今后聚变堆高Z杂质控制提供重要的参考.By using the high-performance extreme ultraviolet spatial resolution impurity spectrometer, the up-down asymmetric distribution of tungsten impurity radiation in EAST tokamak is studied experimentally for the first time. The results show that during the co-directional neutral beam injection, the central toroidal rotation velocity is large, the up-down asymmetry is strong, and the side with strong radiation deviates from ion$B\times \nabla B$ drift direction. However, after injecting deuterated methane CD4 into plasma through the valve of the upper divertor outer plate, the central toroidal rotation velocity decreases rapidly, and the asymmetry of the original tungsten impurity radiation decreases soon and finally reverses. In this work, a further statistical study of the W32+ impurity radiation asymmetry factor Iu/Id depending on the central toroidal rotation velocity Vt0 is performed. The results show that when Vt0 is larger than 30 km/s, the side with strong radiation deviates from ion$B\times \nabla B$ drift direction, however, when Vt0 decreases to below 20 km/s, the asymmetry can be reversed. The relation of toroidal rotation velocity with impurity radiation asymmetry validates the prediction from drift-kinetic theory, and demonstrates that the centrifugal force induced by the toroidal rotation directly causes the asymmetric distribution of tungsten impurities through affecting the momentum conservation parallel to the magnetic field. The experimental observation of the asymmetric distribution of tungsten impurities in this work lays a solid foundation for further studying the poloidal transport of high-Z impurities and provides some important references for controlling the high-Z impurities in future fusion reactors.-
Keywords:
- EAST tokamak /
- impurity up/down asymmetry /
- toroidal field direction /
- divertor gas puffing
[1] Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X 2022 Phys. Scr. 97 045604Google Scholar
[2] Van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F 2013 J. Nucl. Mater. 438 S42Google Scholar
[3] Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q and for the EAST Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar
[4] Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X and the EAST team 2020 Nucl. Fusion 60 102001Google Scholar
[5] Terry J L, Marmar E S, Chen K I, Moos H W 1977 Phys. Rev. Lett. 39 1615.Google Scholar
[6] Brau K, Suckewer S, Wong S K 1983 Nucl. Fusion 23 1657Google Scholar
[7] Rice J E, Reinke M L, Cao N, Hughes J W, Ashbourn J M A, Ernst D R, Hubbard A E, Irby J H 2018 Nucl. Fusion 58 126008Google Scholar
[8] Zhang D, Burhenn R, Beidler C D, Feng Y, Thomsen H, Brandt C, Buller S, Reimold F, Hacker P, Laube R, Geiger J, García Regaña J M, Smith H M, König R, Giannone L, Penzel F, Klinger T, Baldzuhn J, Bozhenkov S, Bräuer T, Brunner J K, Buttenschön B, Damm H, Endler M, Effenberg F, Fuchert G, Gao Y, Jakubowski M, Knauer J, Kremeyer T, Krychowiak M, Kwak S, Laqua H P, Langenberg A, Otte M, PablantN, Pasch E, Rahbarnia K, Pavone A, Rudischhauser L, Svensson J, Killer C, Windisch T, the W7-X Team 2021 Nucl. Fusion 61 116043Google Scholar
[9] Hinton F L, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar
[10] Hinton F L, Wong S K 1985 Phys. Fluids 28 3082Google Scholar
[11] Wong S K 1987 Phys. Fluids 30 818Google Scholar
[12] 王文章, 向玲燕, 吴金华, 杨钟时, 丁芳, 王亮, 段艳敏, 胡振华, 毛红敏, 罗广南 2016 核聚变与等离子体物理 36 42Google Scholar
Wang W Z, Xiang L Y, Wu J H, Yang Z S, Ding F, Wang L, Duan Y M, Hu Z H, Mao H M, Luo G N 2016 Nuclear Fusion Plasma Phys. 36 42Google Scholar
[13] Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D, the LHCD team 2010 Plasma Sci. Technol. 12 118Google Scholar
[14] Xu H D, Wang X J, Liu F K, Zhang J, Huang Y Y, Han J F, Wu D J, Hu H C, Li B, Li M H, Yang Y, Feng J Q, Xu W Y, Tang Y Y, Wei W, Xu L Q, Liu Y, Zhao H L, Lohr J, Gorelov Y A, Anderson J P, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, East Team 2016 Plasma Sci. Technol. 18 442Google Scholar
[15] Zhao Y P, Zhang X J, Man Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R, Wukitch S 2014 Fusion Eng. Des. 89 2642Google Scholar
[16] 刘成岳, 陈美霞, 吴斌 2017 核聚变与等离子体物理 37 313Google Scholar
Liu C Y, Chen M X, Wu B 2017 Nuclear Fusion Plasma Phys. 37 313Google Scholar
[17] Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Ohishi T, Goto M, Shen J S, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N, Li J G 2015 Rev. Sci. Instrum 86 123509Google Scholar
[18] Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F, Wu Z W, Lin X D, Gao X, Ding X B, Yang Y, Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar
[19] Zhang L, Morita S, Wu Z W, Xu Z, Yang X D, Cheng Y X, Zang Q, Liu H Q, Liu Y, Zhang H M, Ohishi T, Chen Y J, Xu L Q, Wu C R, Duan Y M, Gao W, Huang J, Gong X Z, Hu L Q 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar
[20] Versloot T W, de Vries P C, Giroud C, Brix M, von Hellermann M G, Lomas P J, Moulton D, Mullane M O', Nunes I M, Salmi A, Tala T, Voitsekhovitch I, Zastrow K D, JET-EFDA Contributors 2011 Plasma. Phys. Control. Fusion 53 065017Google Scholar
[21] Angioni C, Helander P 2014 Plasma. Phys. Control. Fusion 56 124001Google Scholar
[22] Fülöp T, Helander P 1999 Phys. Plasmas 6 3066Google Scholar
[23] Angioni C 2021 Plasma. Phys. Control. Fusion 63 073001Google Scholar
-
图 2 EAST上不同类型的典型杂质辐射强度剖面 (a)芯部峰化分布; (b)近似对称(Iu/Id = 1)的双峰分布; (c)不对称性朝上(Iu/Id > 1)的双峰分布; (d)不对称性朝下(Iu/Id < 1)的双峰分布, 其中灰色虚线表示磁轴$ \rho =0 $所在的中平面位置
Fig. 2. Typical vertical profiles of normalized intensity of impurity lines: (a) Peaked profile; (b) symmetrical profile with double peaks (Iu/Id = 1); (c) upward asymmetrical profile (Iu/Id > 1); (d) downward asymmetrical profile (Iu/Id < 1). The gray dash line indicates the mid-plane where $ \rho =0 $ locates.
图 3 EAST #93801放电波形图 (a)等离子体电流Ip; (b)低杂波加热功率PLHW及电子回旋加热功率PECRH; (c)中性束加热功率PNBI1L; (d)弦平均电子密度ne和芯部电子温度Te0; (e) O窗口上外充气口的充气阀门电压; (f)上偏滤器Dα信号; (g) CVI (C5+, 33.73 Å)线辐射强度; (h)钨未分解跃迁系辐射强度(W-UTA, 45—70 Å); (i)芯部环向旋转速度Vt0; (j) W27+ 51.457 Å, W32+ 52.2 Å线辐射不对称性因子Iu/Id
Fig. 3. Time evolution of (a) plasma current, Ip; (b) heating power from lower hybrid wave, PLHW, and electron cyclotron wave, PECRH; (c) heating power from neutral beam injection, PNBI1L; (d) line-averaged electron density, ne, and central electron temperature, Te0; (e) valve voltage of upper outboard gas puff inlet located at window “O”; (f) Dα signal of upper divertor; (g) line emission intensity of CVI (C5+ at 33.73 Å); (h) line emission intensity of tungsten in unresolved transition array (W-UTA at 45–70 Å); (i) central toroidal rotation velocity, Vt0; (j) asymmetry factor Iu/Id of line emission intensity for W27+ at 51.457 Å, W32+ at 52.2 Å for EAST discharge #93801.
图 4 EAST #93801在t1 = 2.4—2.6 s (蓝色)、t2 = 3.6—3.8 s (红色)、t3 = 5.0—5.2 s (绿色)时间段内钨不同电离态线辐射剖面 (a), (d) W27+ 51.457 Å; (b), (e) W32+ 52.2 Å; (c), (f) W44+ 60.93 Å. (a)—(c)为归一化辐射强度, (d)—(f)为原始光谱强度计数
Fig. 4. Vertical profiles of line emission intensity for (a), (d), W27+ 51.457 Å; (b), (e), W32+ 52.2 Å; (c), (f) W44+ 60.93 Å during t1 = 2.4–2.6 s (blue), t2 = 3.6–3.8 s (red) and t3 = 5.0–5.2 s (green) in EAST discharge # 93801. Normalized line intensity Inor in (a)–(c), and raw line intensity I in (d)—(f) .
-
[1] Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X 2022 Phys. Scr. 97 045604Google Scholar
[2] Van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F 2013 J. Nucl. Mater. 438 S42Google Scholar
[3] Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q and for the EAST Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar
[4] Gao X, Zeng L, Wu M Q, Zhang T, Yang Y, Ming T F, Zhu X, Wang Y M, Liu H Q, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X and the EAST team 2020 Nucl. Fusion 60 102001Google Scholar
[5] Terry J L, Marmar E S, Chen K I, Moos H W 1977 Phys. Rev. Lett. 39 1615.Google Scholar
[6] Brau K, Suckewer S, Wong S K 1983 Nucl. Fusion 23 1657Google Scholar
[7] Rice J E, Reinke M L, Cao N, Hughes J W, Ashbourn J M A, Ernst D R, Hubbard A E, Irby J H 2018 Nucl. Fusion 58 126008Google Scholar
[8] Zhang D, Burhenn R, Beidler C D, Feng Y, Thomsen H, Brandt C, Buller S, Reimold F, Hacker P, Laube R, Geiger J, García Regaña J M, Smith H M, König R, Giannone L, Penzel F, Klinger T, Baldzuhn J, Bozhenkov S, Bräuer T, Brunner J K, Buttenschön B, Damm H, Endler M, Effenberg F, Fuchert G, Gao Y, Jakubowski M, Knauer J, Kremeyer T, Krychowiak M, Kwak S, Laqua H P, Langenberg A, Otte M, PablantN, Pasch E, Rahbarnia K, Pavone A, Rudischhauser L, Svensson J, Killer C, Windisch T, the W7-X Team 2021 Nucl. Fusion 61 116043Google Scholar
[9] Hinton F L, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar
[10] Hinton F L, Wong S K 1985 Phys. Fluids 28 3082Google Scholar
[11] Wong S K 1987 Phys. Fluids 30 818Google Scholar
[12] 王文章, 向玲燕, 吴金华, 杨钟时, 丁芳, 王亮, 段艳敏, 胡振华, 毛红敏, 罗广南 2016 核聚变与等离子体物理 36 42Google Scholar
Wang W Z, Xiang L Y, Wu J H, Yang Z S, Ding F, Wang L, Duan Y M, Hu Z H, Mao H M, Luo G N 2016 Nuclear Fusion Plasma Phys. 36 42Google Scholar
[13] Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D, the LHCD team 2010 Plasma Sci. Technol. 12 118Google Scholar
[14] Xu H D, Wang X J, Liu F K, Zhang J, Huang Y Y, Han J F, Wu D J, Hu H C, Li B, Li M H, Yang Y, Feng J Q, Xu W Y, Tang Y Y, Wei W, Xu L Q, Liu Y, Zhao H L, Lohr J, Gorelov Y A, Anderson J P, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, East Team 2016 Plasma Sci. Technol. 18 442Google Scholar
[15] Zhao Y P, Zhang X J, Man Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R, Wukitch S 2014 Fusion Eng. Des. 89 2642Google Scholar
[16] 刘成岳, 陈美霞, 吴斌 2017 核聚变与等离子体物理 37 313Google Scholar
Liu C Y, Chen M X, Wu B 2017 Nuclear Fusion Plasma Phys. 37 313Google Scholar
[17] Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Ohishi T, Goto M, Shen J S, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N, Li J G 2015 Rev. Sci. Instrum 86 123509Google Scholar
[18] Xu Z, Zhang L, Cheng Y X, Morita S, Li L, Zhang W M, Zhang F L, Zhao Z H, Zhou T F, Wu Z W, Lin X D, Gao X, Ding X B, Yang Y, Liu H Q 2021 Nucl. Instrum. Methods Phys. Res. A 1010 165545Google Scholar
[19] Zhang L, Morita S, Wu Z W, Xu Z, Yang X D, Cheng Y X, Zang Q, Liu H Q, Liu Y, Zhang H M, Ohishi T, Chen Y J, Xu L Q, Wu C R, Duan Y M, Gao W, Huang J, Gong X Z, Hu L Q 2019 Nucl. Instrum. Methods Phys. Res. A 916 169Google Scholar
[20] Versloot T W, de Vries P C, Giroud C, Brix M, von Hellermann M G, Lomas P J, Moulton D, Mullane M O', Nunes I M, Salmi A, Tala T, Voitsekhovitch I, Zastrow K D, JET-EFDA Contributors 2011 Plasma. Phys. Control. Fusion 53 065017Google Scholar
[21] Angioni C, Helander P 2014 Plasma. Phys. Control. Fusion 56 124001Google Scholar
[22] Fülöp T, Helander P 1999 Phys. Plasmas 6 3066Google Scholar
[23] Angioni C 2021 Plasma. Phys. Control. Fusion 63 073001Google Scholar
计量
- 文章访问数: 1943
- PDF下载量: 55
- 被引次数: 0