搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术

樊秦凯 杨晨光 胡书新 徐春华 李明 陆颖

引用本文:
Citation:

基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术

樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖

Single-molecular surface-induced fluorescence attenuation based on thermal reduced graphene oxide

Fan Qin-Kai, Yang Chen-Guang, Hu Shu-Xin, Xu Chun-Hua, Li Ming, Lu Ying
PDF
HTML
导出引用
  • 单分子表面诱导荧光衰逝(single molecule surface-induced fluorescence attenuation, smSIFA)技术是一种基于二维材料受体、用于研究生物大分子法向运动的精密测量方法, 该方法不受二维平面运动的干扰. 作为受体的二维材料, 其特征淬灭距离决定法向上探测的距离和精度. 近年来以氧化石墨烯(graphene oxide, GO)和石墨烯作为介质受体的SIFA技术在生物大分子的研究中发挥了重要作用, 但石墨烯和GO具有固定的特征淬灭距离, 探测范围有限. 调整探测范围需要更换介质材料, 面临材料选择与制备的困难, 亟需开发用于技术的可调控材料. 本文改良了以GO为介质受体的单分子SIFA技术, 利用热还原的方法对GO进行还原, 通过控制还原温度, 制备出了还原程度不同的还原氧化石墨烯(reduced graphene oxide, rGO), 调控特征淬灭距离, 利用荧光标记的DNA测量rGO的特征淬灭距离. 将rGO用于单分子SIFA技术, 对Holliday junction构象变化的观察, 论证了rGO的探测范围.
    Single-molecular surface-induced fluorescence attenuation (smSIFA) is a precise method of studying the vertical movement of biological macromolecules based on two-dimensional material receptors. This method is not affected by two-dimensional planar motion of membrane or proteins. However, the detection range and accuracy of vertical movement are determined by the properties of two-dimensional materials as receptors. In recent years, surface induced fluorescence attenuation based on graphene oxide and graphene has played an important role in studying biomacromolecules. However, the detection range of graphene and graphene oxide are limited owing to the fixed and limited characteristic quenching distance. Adjusting the detection range requires replacing the medium material, which poses difficulties in selecting and preparing materials. Therefore, it is urgently needed to develop controllable materials for single-molecular SIFA. In this study, the single-molecule SIFA with graphene oxide as the medium acceptor is improved by reducing graphene oxide through thermal reduction. By controlling the reduction temperature, reduced graphene oxides to different reduction degrees are prepared and the characteristic quenching distances are adjusted. The characteristic quenching distance is measured by fluorescent labeled DNA. Single-molecule SIFA based on reduced graphene oxide is used to observe the conformational changes of Holliday junction, and the detection range of reduced graphene oxide is demonstrated.
      通信作者: 陆颖, yinglu@iphy.ac.cn
    • 基金项目: 国家重点研发项目 (批准号: 2019YFA0709304)、国家自然科学基金(批准号: T2221001, 12090051, 11974411, 91753104, U1930402, 12090050, 12022409, 32000871)、中国科学院战略性先导科技专项 (批准号: XDB37000000, XDB0480000)、中国科学院前沿科学重点研究计划(批准号: ZDBS-LY-SLH015)和中国科学院青年创新促进会(批准号: Y2021003)资助的课题.
      Corresponding author: Lu Ying, yinglu@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0709304), the National Natural Science Foundation of China (Grant Nos. T2221001, 12090051, 11974411, 91753104, U1930402, 12090050, 12022409, 32000871), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB37000000, XDB0480000), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-SLH015), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y2021003).
    [1]

    Lerner E, Barth A, Hendrix J, et al. 2021 Elife 10 e60416Google Scholar

    [2]

    Keller A M, DeVore M S, Stich D G, Vu D M, Causgrove T, Werner J H 2018 Anal. Chem. 90 6109Google Scholar

    [3]

    Ishikawa-Ankerhold H C, Ankerhold R, Drummen G P 2012 Molecules 17 4047Google Scholar

    [4]

    贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颍 2021 70 158701Google Scholar

    Jia Q, Fan Q K, Hou W Q, Yang C G, Wang L B, Wang H, Xu C H, Li M, Lu Y 2021 Acta Phys. Sin. 70 158701Google Scholar

    [5]

    Almen M S, Nordstrom K J V, Fredriksson R, Schioth H B 2009 Bmc. Biology. 7 50Google Scholar

    [6]

    White S H, Wimley W C 1999 Annu. Rev. Bioph. Biom. 28 319Google Scholar

    [7]

    马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖 2020 69 038701Google Scholar

    Ma D F, Hou W Q, Xu C H, Zhao C Y, Ma J B, Huang X Y, Jia Q, Ma L, Liu C, Li M, Lu Y 2020 Acta Phys. Sin. 69 038701Google Scholar

    [8]

    Ponmalar, II, Cheerla R, Ayappa K G, Basu J K 2019 Proc. Natl. Acad. Sci. USA 116 12839Google Scholar

    [9]

    King C, Raicu V, Hristova K 2017 J. Biol. Chem. 292 5291Google Scholar

    [10]

    King C, Sarabipour S, Byrne P, Leahy D J, Hristova K 2014 Biophys. J. 106 1309Google Scholar

    [11]

    Li Y, Qian Z, Ma L, Hu S, Nong D, Xu C, Ye F, Lu Y, Wei G, Li M 2016 Nat. Commun. 7 12906Google Scholar

    [12]

    Ma L, Li Y, Ma J B, Hu S X, Li M 2018 Biochemistry 57 4735Google Scholar

    [13]

    Jiang X, Yang C G, Qiu J, Ma D F, Xu C, Hu S X, Han W J, Yuan B, Lu Y 2022 Nanoscale 14 17654Google Scholar

    [14]

    Ma L, Hu S X, He X L, Yang N, Chen L C, Yang C G, Ye F F, Wei T T, Li M 2019 Nano. Lett. 19 6937Google Scholar

    [15]

    Kaminska I, Bohlen J, Yaadav R, Schuler P, Raab M, Schroder T, Zahringer J, Zielonka K, Krause S, Tinnefeld P 2021 Adv. Mater. 33 e2101099Google Scholar

    [16]

    Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna G P, Tinnefeld P 2019 Nano. Lett. 19 4257Google Scholar

    [17]

    Federspiel F, Froehlicher G, Nasilowski M, Pedetti S, Mahmood A, Doudin B, Park S, Lee J O, Halley D, Dubertret B, Gilliot P, Berciaud S 2015 Nano. Lett. 15 1252Google Scholar

    [18]

    Gaudreau L, Tielrooij K J, Prawiroatmodjo G E D K, Osmond J, de Abajo F J G, Koppens F H L 2013 Nano. Lett. 13 2030Google Scholar

    [19]

    Li W, Wojcik M, Xu K 2019 Nano. Lett. 19 983Google Scholar

    [20]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar

    [21]

    Pei S F, Cheng H M 2012 Carbon 50 3210Google Scholar

    [22]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [23]

    Sulowska K, Wiwatowski K, Szustakiewicz P, Grzelak J, Lewandowski W, Mackowski S 2018 Materials (Basel) 11 1567Google Scholar

    [24]

    Kim J, Cote L J, Kim F, Huang J X 2010 J. Am. Chem. Soc. 132 260Google Scholar

    [25]

    Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D 1999 Chem. Mater. 11 771Google Scholar

    [26]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339Google Scholar

    [27]

    Chen X, Meng D, Wang B, Li B W, Li W, Bielawski C W, Ruoff R S 2016 Carbon 101 71Google Scholar

    [28]

    Lazauskas A, Baltrusaitis J, Grigaliūnas V, Guobienė A, Prosyčevas I, Narmontas P, Abakevičienė B, Tamulevičius S 2014 Superlattices Microstruct. 75 461Google Scholar

    [29]

    Li J, Ma J, Kumar V, Fu H, Xu C, Wang S, Jia Q, Fan Q, Xi X, Li M, Liu H, Lu Y 2022 Nucleic. Acids. Res. 50 7002Google Scholar

    [30]

    Ma J B, Chen Z, Xu C H, Huang X Y, Jia Q, Zou Z Y, Mi C Y, Ma D F, Lu Y, Zhang H D, Li M 2020 Nucleic. Acids. Res. 48 3156Google Scholar

    [31]

    陈 泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖 2018 67 118201Google Scholar

    Chen Z, Ma J B, Huang X Y, Jia Q, Xu C H, Zhang H D, Lu Y 2018 Acta Phys. Sin. 67 118201Google Scholar

    [32]

    Wei A, Wang J X, Long Q, Liu X M, Li X G, Dong X C, Huang W 2011 Mater. Res. Bull. 46 2131Google Scholar

    [33]

    Luo D, Zhang G, Liu J, Sun X 2011 J. Phys. Chem. C. 115 11327Google Scholar

    [34]

    Xu S T, Liu J K, Xue Y, Wu T Y, Zhang Z F 2017 Fuller. Nanotub. Car. N. 25 40Google Scholar

    [35]

    Zhen X J, Huang Y F, Yang S S, Feng Z Z, Wang Y, Li C H, Miao Y J, Yin H 2020 Mater. Lett. 260 126880

    [36]

    Dessinges M N, Maier B, Zhang Y, Peliti M, Bensimon D, Croquette V 2002 Phys. Rev. Lett. 89 248102Google Scholar

    [37]

    Baumann C G, Smith S B, Bloomfield V A, Bustamante C 1997 Proc. Natl. Acad. Sci. U. S. A. 94 6185Google Scholar

    [38]

    Son S, Takatori S C, Belardi B, Podolski M, Bakalar M H, Fletcher D A 2020 Proc. Natl. Acad. Sci. U. S. A. 117 14209Google Scholar

    [39]

    Demirel G B, Caykara T 2009 Appl. Surf. Sci. 255 6571Google Scholar

    [40]

    Lu J R, Su T J, Thomas R K 1999 J. Colloid. Interf. Sci. 213 426Google Scholar

    [41]

    P. C. Weber J J W, f M. W. Pantoliano, and F. R. Salemme 1992 J. Am. Chem. Soc. 114 3197Google Scholar

    [42]

    Liu Y L, West S C 2004 Nat. Rev. Mol. Cell. Bio. 5 937Google Scholar

    [43]

    Clegg R M, Murchie A I, Lilley D M 1994 Biophysical. J. 66 99Google Scholar

    [44]

    McKinney S A, Tan E, Wilson T J, Nahas M K, Declais A C, Clegg R M, Lilley D M J, Ha T 2004 Biochem. Soc. T 32 41Google Scholar

    [45]

    McKinney S A, Declais A C, Lilley D M J, Ha T 2003 Nat. Struct. Biol. 10 93Google Scholar

    [46]

    Hohng S, Joo C, Ha T 2004 Biophys. J. 87 1328Google Scholar

    [47]

    Lee J, Lee S, Ragunathan K, Joo C, Ha T, Hohng S 2010 Angew. Chem. Int. Ed. Engl. 49 9922Google Scholar

    [48]

    Uphoff S, Holden S J, Le Reste L, Periz J, van de Linde S, Heilemann M, Kapanidis A N 2010 Nat. Methods. 7 831Google Scholar

  • 图 1  调控d0的SIFA方法 (a) SIFA方法示意图; (b) 荧光供体光强衰减和表面距离的关系; (c) SIFA探测灵敏度和荧光供体距表面距离的关系

    Fig. 1.  SIFA method of adjustable d0: (a) Schematic representation of SIFA method; (b) relationship between degree of attenuation of a fluorescent donor and donor-surface distance; (c) relationship between detection sensitivity of SIFA and donor-surface distance.

    图 2  初始GO以及rGO薄膜的XPS谱 (a) 初始GO薄膜C 1s的XPS谱(左)以及XPS全谱(右); (b) 300 ℃-2 h-rGO薄膜C 1s的XPS谱(左)以及XPS全谱(右); (c) 400 ℃-2 h-rGO薄膜C 1s的XPS谱(左)以及XPS全谱

    Fig. 2.  XPS spectra of original GO and rGO thin films: (a) C 1s XPS spectra (left) and XPS survey spectra (right) for original GO thin films; (b) C 1s XPS spectra (left) and XPS survey spectra (right) for 300 ℃-2 h-rGO thin films; (c) C 1s XPS spectra (left) and XPS survey spectra (right) for the 400 ℃-2 h-rGO thin films.

    图 3  荧光标记DNA测量rGO的d0 (a) DNA成像实验示意图; (b) 在300 ℃-2 h-rGO (上)以及400 ℃-2 h-rGO (下)样品腔内观察DNA; Cy3标记在1 bp (c), 9 bp (d)和21 bp (e) 处的DNA在玻璃以及rGO上成像时的单分子光强

    Fig. 3.  Determination of d0 of rGO by fluorescence labeled DNA: (a) Schematic representation of DNA imaging; (b) DNA imaging on 300 ℃-2 h-rGO (upper) and 400 ℃-2 h-rGO (lower); intensities of Cy3 labeled at 1 bp (c), 9 bp (d) and 21 bp (e) of DNA on glass and rGO.

    图 4  SIFA观察Holliday junction的构象变换, 在玻璃 (a), GO (b)和400 ℃-2 h-rGO (c)上观察Cy3标记的Holliday junction, 左列为单个Cy3的光强时间曲线, 中间为Cy3的光强统计图, 右列为Holliday junction构象变换导致Cy3光强变化的示意图

    Fig. 4.  Observing conformational transformation of Holliday junction by SIFA, observing the Cy3 labeled Holliday junction on glass (a), GO (b) and 400 ℃-2 h-rGO (c), left columns show intensity-time curves of a single Cy3, middle columns show distribution of intensities of Cy3, right columns show schematic representation of the change of Cy3 light intensity caused by the conformational transformation of Holiday junction.

    表 2  DNA Holliday junction的核苷酸序列

    Table 2.  Nucleotide sequence of DNA Holliday junction.

    名称核苷酸序列
    XCCC AGT TGA GAG CTT GAT AGG G
    BCCC TAT CAA GCC GCT GTT ACG G
    RCCC ACC GCT CTT CTC AAC TGG G
    Hbiotin-CCG TAA CAG CGA GAG CGG TGG G(Cy3)
    下载: 导出CSV

    表 1  荧光标记DNA测量rGO的d0

    Table 1.  Determination of d0 of rGO by fluorescence labeled DNA.

    样品1 bp (7.5 nm)9 bp (8.9 nm)21 bp (10.9 nm)
    300 ℃-2h-rGOI = (0.66 ± 0.08)I0
    d0 = (6.4 ± 0.7) nm
    I = (0.79 ± 0.07)I0
    d0 = (6.2 ± 0.6) nm
    I≈ I0
    400 ℃-2h-rGOI = (0.45 ± 0.09)I0
    d0 = (7.9 ± 0.7) nm
    I = (0.60 ± 0.10)I0
    d0 = (8.1± 0.8) nm
    I = (0.80 ± 0.09)I0
    d0 = (7.8 ± 0.9) nm
    下载: 导出CSV
    Baidu
  • [1]

    Lerner E, Barth A, Hendrix J, et al. 2021 Elife 10 e60416Google Scholar

    [2]

    Keller A M, DeVore M S, Stich D G, Vu D M, Causgrove T, Werner J H 2018 Anal. Chem. 90 6109Google Scholar

    [3]

    Ishikawa-Ankerhold H C, Ankerhold R, Drummen G P 2012 Molecules 17 4047Google Scholar

    [4]

    贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颍 2021 70 158701Google Scholar

    Jia Q, Fan Q K, Hou W Q, Yang C G, Wang L B, Wang H, Xu C H, Li M, Lu Y 2021 Acta Phys. Sin. 70 158701Google Scholar

    [5]

    Almen M S, Nordstrom K J V, Fredriksson R, Schioth H B 2009 Bmc. Biology. 7 50Google Scholar

    [6]

    White S H, Wimley W C 1999 Annu. Rev. Bioph. Biom. 28 319Google Scholar

    [7]

    马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖 2020 69 038701Google Scholar

    Ma D F, Hou W Q, Xu C H, Zhao C Y, Ma J B, Huang X Y, Jia Q, Ma L, Liu C, Li M, Lu Y 2020 Acta Phys. Sin. 69 038701Google Scholar

    [8]

    Ponmalar, II, Cheerla R, Ayappa K G, Basu J K 2019 Proc. Natl. Acad. Sci. USA 116 12839Google Scholar

    [9]

    King C, Raicu V, Hristova K 2017 J. Biol. Chem. 292 5291Google Scholar

    [10]

    King C, Sarabipour S, Byrne P, Leahy D J, Hristova K 2014 Biophys. J. 106 1309Google Scholar

    [11]

    Li Y, Qian Z, Ma L, Hu S, Nong D, Xu C, Ye F, Lu Y, Wei G, Li M 2016 Nat. Commun. 7 12906Google Scholar

    [12]

    Ma L, Li Y, Ma J B, Hu S X, Li M 2018 Biochemistry 57 4735Google Scholar

    [13]

    Jiang X, Yang C G, Qiu J, Ma D F, Xu C, Hu S X, Han W J, Yuan B, Lu Y 2022 Nanoscale 14 17654Google Scholar

    [14]

    Ma L, Hu S X, He X L, Yang N, Chen L C, Yang C G, Ye F F, Wei T T, Li M 2019 Nano. Lett. 19 6937Google Scholar

    [15]

    Kaminska I, Bohlen J, Yaadav R, Schuler P, Raab M, Schroder T, Zahringer J, Zielonka K, Krause S, Tinnefeld P 2021 Adv. Mater. 33 e2101099Google Scholar

    [16]

    Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna G P, Tinnefeld P 2019 Nano. Lett. 19 4257Google Scholar

    [17]

    Federspiel F, Froehlicher G, Nasilowski M, Pedetti S, Mahmood A, Doudin B, Park S, Lee J O, Halley D, Dubertret B, Gilliot P, Berciaud S 2015 Nano. Lett. 15 1252Google Scholar

    [18]

    Gaudreau L, Tielrooij K J, Prawiroatmodjo G E D K, Osmond J, de Abajo F J G, Koppens F H L 2013 Nano. Lett. 13 2030Google Scholar

    [19]

    Li W, Wojcik M, Xu K 2019 Nano. Lett. 19 983Google Scholar

    [20]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar

    [21]

    Pei S F, Cheng H M 2012 Carbon 50 3210Google Scholar

    [22]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [23]

    Sulowska K, Wiwatowski K, Szustakiewicz P, Grzelak J, Lewandowski W, Mackowski S 2018 Materials (Basel) 11 1567Google Scholar

    [24]

    Kim J, Cote L J, Kim F, Huang J X 2010 J. Am. Chem. Soc. 132 260Google Scholar

    [25]

    Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D 1999 Chem. Mater. 11 771Google Scholar

    [26]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339Google Scholar

    [27]

    Chen X, Meng D, Wang B, Li B W, Li W, Bielawski C W, Ruoff R S 2016 Carbon 101 71Google Scholar

    [28]

    Lazauskas A, Baltrusaitis J, Grigaliūnas V, Guobienė A, Prosyčevas I, Narmontas P, Abakevičienė B, Tamulevičius S 2014 Superlattices Microstruct. 75 461Google Scholar

    [29]

    Li J, Ma J, Kumar V, Fu H, Xu C, Wang S, Jia Q, Fan Q, Xi X, Li M, Liu H, Lu Y 2022 Nucleic. Acids. Res. 50 7002Google Scholar

    [30]

    Ma J B, Chen Z, Xu C H, Huang X Y, Jia Q, Zou Z Y, Mi C Y, Ma D F, Lu Y, Zhang H D, Li M 2020 Nucleic. Acids. Res. 48 3156Google Scholar

    [31]

    陈 泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖 2018 67 118201Google Scholar

    Chen Z, Ma J B, Huang X Y, Jia Q, Xu C H, Zhang H D, Lu Y 2018 Acta Phys. Sin. 67 118201Google Scholar

    [32]

    Wei A, Wang J X, Long Q, Liu X M, Li X G, Dong X C, Huang W 2011 Mater. Res. Bull. 46 2131Google Scholar

    [33]

    Luo D, Zhang G, Liu J, Sun X 2011 J. Phys. Chem. C. 115 11327Google Scholar

    [34]

    Xu S T, Liu J K, Xue Y, Wu T Y, Zhang Z F 2017 Fuller. Nanotub. Car. N. 25 40Google Scholar

    [35]

    Zhen X J, Huang Y F, Yang S S, Feng Z Z, Wang Y, Li C H, Miao Y J, Yin H 2020 Mater. Lett. 260 126880

    [36]

    Dessinges M N, Maier B, Zhang Y, Peliti M, Bensimon D, Croquette V 2002 Phys. Rev. Lett. 89 248102Google Scholar

    [37]

    Baumann C G, Smith S B, Bloomfield V A, Bustamante C 1997 Proc. Natl. Acad. Sci. U. S. A. 94 6185Google Scholar

    [38]

    Son S, Takatori S C, Belardi B, Podolski M, Bakalar M H, Fletcher D A 2020 Proc. Natl. Acad. Sci. U. S. A. 117 14209Google Scholar

    [39]

    Demirel G B, Caykara T 2009 Appl. Surf. Sci. 255 6571Google Scholar

    [40]

    Lu J R, Su T J, Thomas R K 1999 J. Colloid. Interf. Sci. 213 426Google Scholar

    [41]

    P. C. Weber J J W, f M. W. Pantoliano, and F. R. Salemme 1992 J. Am. Chem. Soc. 114 3197Google Scholar

    [42]

    Liu Y L, West S C 2004 Nat. Rev. Mol. Cell. Bio. 5 937Google Scholar

    [43]

    Clegg R M, Murchie A I, Lilley D M 1994 Biophysical. J. 66 99Google Scholar

    [44]

    McKinney S A, Tan E, Wilson T J, Nahas M K, Declais A C, Clegg R M, Lilley D M J, Ha T 2004 Biochem. Soc. T 32 41Google Scholar

    [45]

    McKinney S A, Declais A C, Lilley D M J, Ha T 2003 Nat. Struct. Biol. 10 93Google Scholar

    [46]

    Hohng S, Joo C, Ha T 2004 Biophys. J. 87 1328Google Scholar

    [47]

    Lee J, Lee S, Ragunathan K, Joo C, Ha T, Hohng S 2010 Angew. Chem. Int. Ed. Engl. 49 9922Google Scholar

    [48]

    Uphoff S, Holden S J, Le Reste L, Periz J, van de Linde S, Heilemann M, Kapanidis A N 2010 Nat. Methods. 7 831Google Scholar

  • [1] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统.  , 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析.  , 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [3] 贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颖. DNA双链退火压力对DNA聚合酶gp5链置换的调控.  , 2021, 70(15): 158701. doi: 10.7498/aps.70.20210707
    [4] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器.  , 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [5] 马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖. 脂质体包裹荧光受体方法研究α-突触核蛋白在磷脂膜上的结构和动态特征.  , 2020, 69(3): 038701. doi: 10.7498/aps.69.20191607
    [6] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究.  , 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [7] 李东阳, 张远宪, 欧永雄, 普小云. 聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光.  , 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [8] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备.  , 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [9] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响.  , 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [10] 吕袭明, 李辉, 尤菁, 李伟, 王鹏业, 李明, 奚绪光, 窦硕星. 单分子荧光共振能量转移数据处理的优化算法.  , 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟.  , 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移.  , 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [13] 何志聪, 李芳, 李牧野, 魏来. CdTe量子点-铜酞菁复合体系荧光共振能量转移的研究.  , 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [14] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究.  , 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [15] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究.  , 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [16] 秦 莉, 张喜田, 梁 瑶, 张 锷, 高 红, 张治国. 氧化锌微米花的共振拉曼和“负热淬灭”效应.  , 2006, 55(6): 3119-3123. doi: 10.7498/aps.55.3119
    [17] 潘多海, 马永红. 表面增强的分子间能量转移效应的机理研究.  , 1995, 44(12): 1914-1920. doi: 10.7498/aps.44.1914
    [18] 方炎, 魏凤文, 王亚利, 于永澄. 银微粒表面吸附若丹明B分子荧光增强和淬灭的研究.  , 1994, 43(4): 555-559. doi: 10.7498/aps.43.555
    [19] 潘多海, 苗润才, 李秀英, 张鹏翔. SERS活性表面荧光增强或淬灭的机制研究.  , 1989, 38(6): 965-972. doi: 10.7498/aps.38.965
    [20] 高文斌, 沈玉其, J. H?GER, W. KRIEGER. 激光诱导荧光法研究CH2Cl2分子的振动能量转移.  , 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
计量
  • 文章访问数:  3271
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-04-19
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回
Baidu
map