搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用Ga掺杂的具有低泄漏电流和高稳定性避雷器ZnO压敏电阻

刘冬季 马圆圆 何金柏 王昊 周远翔 孙冠岳 赵洪峰

引用本文:
Citation:

采用Ga掺杂的具有低泄漏电流和高稳定性避雷器ZnO压敏电阻

刘冬季, 马圆圆, 何金柏, 王昊, 周远翔, 孙冠岳, 赵洪峰

ZnO varistors with low leakage current and high stability arrester with Ga doping

Liu Dong-Ji, Ma Yuan-Yuan, He Jin-Bai, Wang Hao, Zhou Yuan-Xiang, Sun Guan-Yue, Zhao Hong-Feng
PDF
HTML
导出引用
  • 为了获得性能更为稳定的ZnO压敏电阻, 研究了含有Ga掺杂的ZnO压敏电阻的稳定特性, 对所获得的实验样品的微观结构和电气特性进行了电子显微镜扫描测试、电压-电流非线性特性测试、电容-电压特性测试、X-射线衍射谱测试、能谱扫描测试、介质损耗测试及交流加速老化测试. 实验结果表明, 随着Ga掺杂量的进一步增加, Ga离子占据了ZnO晶格上的空位, 增加了界面态密度, 提高了肖特基势垒高度, 一方面降低了 ZnO压敏电阻的泄漏电流密度, 另一方面抑制了耗尽层中自由电子的迁移, 提高了ZnO压敏电阻在高荷电率环境下的稳定特性. Al离子固溶到ZnO晶格当中, 产生大量的自由电子, 降低了ZnO晶粒的电阻率, 从而有效降低了ZnO压敏电阻在通过大电流时的残压比. 当Ga的掺杂摩尔分数达到0.6%时, 泄漏电流密度为0.84 μA/cm2, 残压比为1.97, 非线性系数为66, 其肖特基势垒高度为1.81 eV. 在115 ℃环境下, 对试验样品施加87% E1 mA, 89% E1 mA和91% E1 mA的交流加速老化电压, 老化时间为1000 h, 老化系数分别为0.394, 0.437和0.550. 此研究将有助于进一步提高ZnO避雷器的保护水平, 实现深度限制电网过电压, 提高电力系统的安全稳定性.
    The insulation level of power equipment in power system is based on the overvoltage protection level of metal oxide arrester represented by zinc oxide valve blade. Owing to its superior nonlinear voltage current characteristics and surge energy absorption capacity, ZnO varistor is widely used as the core component of power system arrester. The electrical characteristics of ZnO varistors are determined by their complex microstructures and grain boundary characteristics. Therefore, to further improve the insulation level of power grid equipment, doping is required to further improve the grain boundary characteristics of ZnO varistors. In order to obtain more stable ZnO varistors, the stability characteristics of Ga doped ZnO varistors are investigated. The microstructural and electrical characteristics of the obtained experimental samples are tested by scanning electron microscope, voltage current nonlinear characteristics, capacitance voltage characteristics, X-ray diffraction spectrum, energy spectrum scanning, dielectric loss, and AC acceleration aging. The experimental results show that with the further increase of gallium doping, gallium ions occupy the vacancies on the zinc oxide lattice, increasing the interface state density, and improving the Schottky barrier height. On the one hand, the leakage current density of ZnO varistor is reduced, on the other hand, the migration of free electrons in the depletion layer is suppressed, and the stability of ZnO varistor in the high charge rate environment is improved. Aluminum ions are dissolved into the ZnO lattice to generate a large number of free electrons, thereby reducing the resistivity of ZnO grains, which can effectively reduce the residual voltage ratio of ZnO varistor when large current passes through it. When the doping amount of Ga reaches 0.6%, the leakage current is 0.84 μA/cm2, the residual voltage ratio is 1.97, the nonlinear coefficient is 66, and the Schottky barrier height is 1.81 eV. At 115 ℃, AC accelerated aging voltages of 87% E1 mA, 89% E1 mA and 91% E1 mA are applied to the test sample separately. The aging time is 1000 h, and the aging coefficients are 0.394, 0.437 and 0.550 separately. This research will help to further improve the protection level of zinc oxide surge arresters, achieving the deep limitation of grid overvoltage, and improving the security and stability of power systems.
      通信作者: 刘冬季, liudj19@126.com
    • 基金项目: 国家自然科学基金(批准号: 51777162)资助的课题
      Corresponding author: Liu Dong-Ji, liudj19@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777162)
    [1]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817Google Scholar

    [2]

    姚睿丰, 王妍, 高景晖, 陈川, 郭经红 2021 电工技术学报 36 1324

    Yao R F, Wang Y, Gao J H, Chen C, Guo J H 2021 Trans. Chin. Elc. Soc. 36 1324

    [3]

    王玉平, 孙西昌 2006 电气技术 36 35Google Scholar

    Wang Y P, Sun X C 2006 Elc. Tchnol. 36 35Google Scholar

    [4]

    舒印彪 2016 中国经贸导刊 34 54Google Scholar

    Shu Y B 2016 Chni. Eco. Tra. Her. 34 54Google Scholar

    [5]

    李振, 余占清, 何金良, 彭向阳, 李志锋 2011 高电压技术 37 3120

    Li Z, Yu Z Q, He J L, Peng X Y, Li Z F 2011 High Voltage Eng. 37 3120

    [6]

    Lu Z Y, Chen Z Y, Wu J Q 2009 J. Ceram. Soc. Jpn. 117 851Google Scholar

    [7]

    Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T 1980 IEEE Trans. Power. Syst. 99 1548

    [8]

    Zhao H F, He J L, Hu J, Chen S M, Xie Q Y 2016 J. Mater. Lett. 164 80Google Scholar

    [9]

    Meng P F, Gu S Q, Wang J, Hu J, He J L 2018 J. Ceram. Int. 44 1168Google Scholar

    [10]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487Google Scholar

    [11]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678Google Scholar

    [12]

    万帅, 许衡, 席成圆, 孟鹏飞, 赵洪峰, 曹伟 2020 高电压技术 46 1434

    Wan S, Xu H, Xi C Y, Meng P F, Zhao H F, Cao W 2020 High Voltage Eng. 46 1434

    [13]

    Zhao H F, Hu J, Chen S M, Xie Q Y, He J L 2016 J. Ceram. Int. 42 5582Google Scholar

    [14]

    Wurst J C, Nelson I A 1972 J. Am. Ceram. Soc. 97 109

    [15]

    Wang H Z, Li G Q, Wang G B, Peng J C, Jiang H, Liu Y T 2017 Appl. Energ. 188 56Google Scholar

    [16]

    Kim S S, Cho H G, Choi I S, Park T G, Jung S Y 2002 International Conference on Power System Technology Proceedings Kunming, China, October 13–17, 2002 p13

    [17]

    IEC60099-4 2006 Matel Oxide Arresters without Gapless for a.c. Systems (Swithzerlan: Geneva)

    [18]

    Bueno P R, Cassia-Santos D E M R, Leite E R, Longo L, Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F 2000 J. Appl. Phys. 88 6545Google Scholar

    [19]

    Long W C, Hu J, He J L 2010 J. Matter. Lett. 64 1081Google Scholar

    [20]

    程 宽, 赵洪峰, 周远翔 2022 电工技术学报 37 3413

    Cheng K, Zhao H F, Zhou Y X 2022 Trans. Chin. Elc. Soc. 37 3413

    [21]

    GB/T11032–2010 中华人民共和国国家标准交流无间隙金属氧化物避雷器 (北京: 中国标准出版社)

    GB11032—2010 Metal-oxide Surge Arresters without Gaps for ac Systems (Beijing: China Standard Press) (in Chinese)

    [22]

    Cheng L H, Yuan K Y, Meng L, Zheng L Y 2012 J. Am. Ceram. Soc. 95 1004

    [23]

    李天娇, 张博, 乌江 2022 电工技术学报 37 1554

    Li T J, Zhang B, Wu J 2022 Trans. Chin. Elc. Soc. 37 1554

    [24]

    孟鹏飞, 胡军, 邬锦波, 何金良 2018 高电压技术 44 241

    Meng P F, Hu J, Wu J B, He J L 2018 High Voltage Eng. 44 241

    [25]

    刘向洋 2018 硕士学位论文 (郑州: 中原工学院)

    Liu X Y 2012 M. S. Thesis (Zhengzhou: Zhongyuan University of Technology) (in Chinese)

    [26]

    Gupta T K 1994 J. Mater. Res. 9 2213Google Scholar

    [27]

    Jaroszewski M, Pospieszna J 2004 International Conference on Solid Dieliectrics Toulouse, France, July 5–9, 2004 p731

    [28]

    孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377

    Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377

    [29]

    Casro M S, Benavente M A, Aldao C M 1993 J. Appl. Phys. 5 A341

  • 图 1  不同Ga3+离子掺杂量下ZnO压敏电阻SEM 显微结构

    Fig. 1.  SEM images of the ZnO varistor samples prepared with various Ga3+ contents.

    图 2  Zn, Bi, Al, Ga元素在 ZnO 压敏电阻微观结构中的分布 (a) 测量路径; (b) 典型元素的分布强度

    Fig. 2.  Distribution of Zn, Bi, Al, Ga in the microstructure of ZnO varistor sample: (a) The measurement path; (b) the intensity of typical elements.

    图 3  老化前(a), (b)和老化后(c), (d)样品的E-J特性图

    Fig. 3.  E-J characteristic curves of samples before aging (a), (b) and after aging (c), (d).

    图 4  ZnO压敏电阻老化前(a)和老化后(b) C-V特性曲线

    Fig. 4.  C-V characteristic curves of ZnO varistor before aging (a) and after aging (b).

    图 5  ZnO压敏电阻的介质损耗变化曲线

    Fig. 5.  Dielectric loss variation curves of ZnO Varistor

    图 6  ZnO阀片在不同荷电率下的交流加速老化曲线

    Fig. 6.  AC acceleration aging curves of ZnO valve under different charge rates.

    图 7  不同Ga掺杂的ZnO 压敏电阻XRD图谱

    Fig. 7.  XRD patterns of the ZnO varistor samples with various Ga dopant contents.

    表 1  老化前后ZnO压敏电阻的微观结构和宏观电气参数

    Table 1.  Microstructure and macro electrical parameters of ZnO varistors before and after aging.

    样品编号Ga content/%d/μmE1 mA/(V·mm–1)JL/(μA·cm–2)αNd/(1023 m–3)Ni/(1016 m–2)$ {\phi _{\text{b}}} $/eVKKt


    #108.2373.11.76540.871.401.452.35
    #20.27.9423.21.34570.921.511.602.17
    #30.47.7440.40.89631.071.641.621.99
    #40.67.4454.40.84661.131.781.811.97
    #50.87.3478.51.12611.251.751.582.14


    #4-87%436.31.12611.261.771.600.394
    变化率–3.98%33.30%–7.60%11.50%–0.56%–11.60%
    #4-89%427.21.15581.291.741.510.437
    变化率–5.99%36.90%–12.10%14.16%–2.25%–16.57%
    #4-91%418.11.23551.341.691.380.550
    变化率–7.99%46.40%–16.70%18.58%–5.06%–23.76%
    下载: 导出CSV
    Baidu
  • [1]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817Google Scholar

    [2]

    姚睿丰, 王妍, 高景晖, 陈川, 郭经红 2021 电工技术学报 36 1324

    Yao R F, Wang Y, Gao J H, Chen C, Guo J H 2021 Trans. Chin. Elc. Soc. 36 1324

    [3]

    王玉平, 孙西昌 2006 电气技术 36 35Google Scholar

    Wang Y P, Sun X C 2006 Elc. Tchnol. 36 35Google Scholar

    [4]

    舒印彪 2016 中国经贸导刊 34 54Google Scholar

    Shu Y B 2016 Chni. Eco. Tra. Her. 34 54Google Scholar

    [5]

    李振, 余占清, 何金良, 彭向阳, 李志锋 2011 高电压技术 37 3120

    Li Z, Yu Z Q, He J L, Peng X Y, Li Z F 2011 High Voltage Eng. 37 3120

    [6]

    Lu Z Y, Chen Z Y, Wu J Q 2009 J. Ceram. Soc. Jpn. 117 851Google Scholar

    [7]

    Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T 1980 IEEE Trans. Power. Syst. 99 1548

    [8]

    Zhao H F, He J L, Hu J, Chen S M, Xie Q Y 2016 J. Mater. Lett. 164 80Google Scholar

    [9]

    Meng P F, Gu S Q, Wang J, Hu J, He J L 2018 J. Ceram. Int. 44 1168Google Scholar

    [10]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487Google Scholar

    [11]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678Google Scholar

    [12]

    万帅, 许衡, 席成圆, 孟鹏飞, 赵洪峰, 曹伟 2020 高电压技术 46 1434

    Wan S, Xu H, Xi C Y, Meng P F, Zhao H F, Cao W 2020 High Voltage Eng. 46 1434

    [13]

    Zhao H F, Hu J, Chen S M, Xie Q Y, He J L 2016 J. Ceram. Int. 42 5582Google Scholar

    [14]

    Wurst J C, Nelson I A 1972 J. Am. Ceram. Soc. 97 109

    [15]

    Wang H Z, Li G Q, Wang G B, Peng J C, Jiang H, Liu Y T 2017 Appl. Energ. 188 56Google Scholar

    [16]

    Kim S S, Cho H G, Choi I S, Park T G, Jung S Y 2002 International Conference on Power System Technology Proceedings Kunming, China, October 13–17, 2002 p13

    [17]

    IEC60099-4 2006 Matel Oxide Arresters without Gapless for a.c. Systems (Swithzerlan: Geneva)

    [18]

    Bueno P R, Cassia-Santos D E M R, Leite E R, Longo L, Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F 2000 J. Appl. Phys. 88 6545Google Scholar

    [19]

    Long W C, Hu J, He J L 2010 J. Matter. Lett. 64 1081Google Scholar

    [20]

    程 宽, 赵洪峰, 周远翔 2022 电工技术学报 37 3413

    Cheng K, Zhao H F, Zhou Y X 2022 Trans. Chin. Elc. Soc. 37 3413

    [21]

    GB/T11032–2010 中华人民共和国国家标准交流无间隙金属氧化物避雷器 (北京: 中国标准出版社)

    GB11032—2010 Metal-oxide Surge Arresters without Gaps for ac Systems (Beijing: China Standard Press) (in Chinese)

    [22]

    Cheng L H, Yuan K Y, Meng L, Zheng L Y 2012 J. Am. Ceram. Soc. 95 1004

    [23]

    李天娇, 张博, 乌江 2022 电工技术学报 37 1554

    Li T J, Zhang B, Wu J 2022 Trans. Chin. Elc. Soc. 37 1554

    [24]

    孟鹏飞, 胡军, 邬锦波, 何金良 2018 高电压技术 44 241

    Meng P F, Hu J, Wu J B, He J L 2018 High Voltage Eng. 44 241

    [25]

    刘向洋 2018 硕士学位论文 (郑州: 中原工学院)

    Liu X Y 2012 M. S. Thesis (Zhengzhou: Zhongyuan University of Technology) (in Chinese)

    [26]

    Gupta T K 1994 J. Mater. Res. 9 2213Google Scholar

    [27]

    Jaroszewski M, Pospieszna J 2004 International Conference on Solid Dieliectrics Toulouse, France, July 5–9, 2004 p731

    [28]

    孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377

    Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377

    [29]

    Casro M S, Benavente M A, Aldao C M 1993 J. Appl. Phys. 5 A341

  • [1] 刘泰齐, 陈少永, 牟茂淋, 唐昌建. 超电阻对气球模线性不稳定性影响的理论研究.  , 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [2] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能.  , 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [3] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究.  , 2021, (): . doi: 10.7498/aps.70.20210635
    [4] 张登魁, 赵金良, 张红国, 岳明. LaFe11.5Si1.5化合物氢化特性及稳定性的研究.  , 2014, 63(19): 197501. doi: 10.7498/aps.63.197501
    [5] 李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国. 下电极对ZnO薄膜电阻开关特性的影响.  , 2013, 62(7): 077202. doi: 10.7498/aps.62.077202
    [6] 张希, 包伯成, 王金平, 马正华, 许建平. 固定关断时间控制Buck变换器输出电容等效串联电阻的稳定性分析.  , 2012, 61(16): 160503. doi: 10.7498/aps.61.160503
    [7] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究.  , 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [8] 曹功勋, 张晓青, 孙转兰, 王学文, 娄可行, 夏钟福. 人工调控微结构压电驻极体的热稳定性和电荷动态特性.  , 2010, 59(9): 6514-6520. doi: 10.7498/aps.59.6514
    [9] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [10] 梅龙伟, 张振华, 丁开和. 单壁碳纳米管电子输运特性的稳定性分析.  , 2009, 58(3): 1971-1979. doi: 10.7498/aps.58.1971
    [11] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [12] 单晓楠, 黄 如, 李 炎, 蔡一茂. NiSi金属栅电学特性的热稳定性研究.  , 2007, 56(8): 4943-4949. doi: 10.7498/aps.56.4943
    [13] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究.  , 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [14] 刘 鹏, 杨同青, 王志宏, 徐 卓, 张良莹, 姚 熹. PLZST反铁电陶瓷电场诱导相变与相稳定性的研究.  , 1998, 47(10): 1727-1733. doi: 10.7498/aps.47.1727
    [15] 方瑞宜, 喻英雷, 陈廷勇, 戴道生. 自旋阀型[NiFe/Cu/Co/Cu]多层膜的磁电阻、矫顽力和稳定性研究.  , 1997, 46(9): 1841-1848. doi: 10.7498/aps.46.1841
    [16] 石秉仁, 隋国芳, 郭干城. 离子动力参数区托卡马克电阻性内扭曲模稳定性分析.  , 1996, 45(5): 801-810. doi: 10.7498/aps.45.801
    [17] 吕曼祺, A. WAGENDRISTEL. 非晶Nd-Fe薄膜电阻的温度效应与非晶稳定性.  , 1993, 42(5): 840-846. doi: 10.7498/aps.42.840
    [18] 王炜, 姚希贤. 圆对称环域Josephson隧道结的静态特性(Ⅱ)——自场方程解的稳定性.  , 1988, 37(5): 714-719. doi: 10.7498/aps.37.714
    [19] 厉彦民, 赵光安. 双极化子的能带,稳定性与热力学特性.  , 1984, 33(2): 273-276. doi: 10.7498/aps.33.273
    [20] 马腾才, 宫野. 电流非单调分布时的电阻流体不稳定性.  , 1984, 33(8): 1112-1119. doi: 10.7498/aps.33.1112
计量
  • 文章访问数:  3733
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-21
  • 修回日期:  2022-12-19
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map