搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3基导热聚合物中的热逾渗网络

徐浩哲 徐象繁

引用本文:
Citation:

Al2O3基导热聚合物中的热逾渗网络

徐浩哲, 徐象繁

Thermal percolation network in Al2O3 based thermal conductive polymer

Xu Hao-Zhe, Xu Xiang-Fan
PDF
HTML
导出引用
  • 添加高导热填料的有机聚合物是最常用的一种热界面材料. 其中一种提升热导率的方式是采用不同形貌填料复合添加, 结合各种填料的优点, 取长补短. 然而, 由于有效介质理论的局限性, 以及热逾渗理论的滞后研究, 对于不同形貌填料的协同机制依旧缺乏探索. 为了剔除不同材料的耦合影响, 本文采用不同形貌的同种氧化铝作为填料, 分别制备了添加氧化铝球、氧化铝片以及球/片1∶1混合的环氧树脂复合材料. 通过稳态法测量样品的热导率, 发现球/片1∶1混合样品热导率得到显著提升. 结合热逾渗理论, 以及对填料微观分析的观测, 发现片状和球状填料复合添加的协同作用对热逾渗网络有促进作用.
    Polymers incorporated with high thermal conductivity fillers have numerous applications in thermal interface materials. Plenty of efforts have been made to improve the thermal conductivity of polymer composite. A possible method is to choose fillers with different morphologies, which can combine the advantages of various fillers. However, owing to the limitations of the effective medium theory as well as lack of researches of thermal percolation, there is still little understanding of the synergistic mechanism of fillers with different morphologies. In order to avoid the coupling effect of different materials, this work uses the same kind of Al2O3 but with different morphologies to prepare different kinds of epoxy composites incorporated with spherical Al2O3, plate-like Al2O3 and fillers mixed of 1∶1 ratio. The thermal conductivity of each sample is measured by the steady state method. With the fitting of the thermal percolation theory, the synergistic effect of plate-like fillers and that of spherical fillers are verified to promote the formation of thermal percolation network. In addition, by observing the microscopic distribution of fillers, we try to explain the mechanism of this synergistic effect.
      通信作者: 徐象繁, xuxiangfan@tongji.edu.cn
    • 基金项目: 广东省重点领域研发计划(批准号: 2020B010190004)和国家自然科学基金(批准号: 12174286, 11890703, 11935010)资助的课题.
      Corresponding author: Xu Xiang-Fan, xuxiangfan@tongji.edu.cn
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010190004) and the National Natural Science Foundation of China (Grant Nos. 12174286, 11890703, 11935010).
    [1]

    Li S, Zheng Q, Lü Y, Liu X, Wang X, Huang P Y, Cahill D G, Lü B 2018 Science 361 579Google Scholar

    [2]

    Xu X F, Chen J, Zhou J, Li B W 2018 Adv. Mater. 30 1705544Google Scholar

    [3]

    Tian F, Ren Z F 2019 Angew. Chem. Int. Ed. 58 5824Google Scholar

    [4]

    Chen J, Huang X Y, Zhu Y K, Jiang P K 2017 Adv. Funct. Mater. 27 1604754Google Scholar

    [5]

    Lin M Y, Li Y H, Xu K, Ou Y H, Su L F, Feng X, Li J, Qi H S, Liu D 2019 Compos. Sci. Technol. 175 85Google Scholar

    [6]

    Li X X, Yan Y P, Dong L, Guo J, Aiyiti A, Xu X F, Li B W 2017 J. Phys. D: Appl. Phys. 50 104002Google Scholar

    [7]

    Wang L M, Liu Y C, Zhang Z M, Wang B R, Qiu J J, Hui D, Wang S 2017 Compos. B. Eng. 122 145Google Scholar

    [8]

    Choy C L 1977 Polymer 18 984Google Scholar

    [9]

    Henry A 2014 Annu. Rev. Heat Transf. 17 485Google Scholar

    [10]

    Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C 123 31003Google Scholar

    [11]

    Zhang C, Huang R J, Wang Y G, Wu Z X, Guo S B, Zhang H, Li J, Huang C J, Wang W, Li L F 2018 J. Mater. Chem. A 6 20663Google Scholar

    [12]

    Zhang T, Sun J J, Ren L L, Yao Y M, Wang M M, Zeng X L, Sun R, Xu J B, Wong C P 2019 Compos. Part A Appl. Sci. Manuf. 121 92Google Scholar

    [13]

    Lu C H, Chiang S W, Du H, Li J, Gan L, Zhang X, Chu X D, Yao Y W, Li B H, Kang F Y 2017 Polymer 115 52Google Scholar

    [14]

    Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749Google Scholar

    [15]

    Zhang W B, Zhang Z X, Yang J H, Huang T, Zhang N, Zheng X T, Wang Y, Zhou Z W 2015 Carbon 90 242Google Scholar

    [16]

    Li Z L, Ju D D, Han L J, Dong L S 2017 Thermochim. Acta. 652 9Google Scholar

    [17]

    McCue J P 1973 Coord. Chem. Rev. 10 265Google Scholar

    [18]

    Bruggeman D A G 1935 Ann. Phys. 416 636Google Scholar

    [19]

    Wang Y W, Weng G J, Meguid S A, Hamouda A M 2014 J. Appl. Phys. 115 193706Google Scholar

    [20]

    Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar

    [21]

    Coleman J N, Khan U, Blau W J, Gun’ko Y K 2006 Carbon 44 1624Google Scholar

    [22]

    Zheng R, Gao J, Wang J, Feng S P, Ohtani H, Wang J, Chen G 2012 Nano Lett. 12 188Google Scholar

    [23]

    Shi B, Dong L, Li M Q, Liu B, Kim K, Xu X F, Zhou J, Liu J 2018 Appl. Phys. Lett. 113 041902Google Scholar

    [24]

    潘东楷, 宗志成, 杨诺 2022 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [25]

    Kempers R, Kolodner P, Lyons A, Robinson A J 2009 Rev. Sci. Instrum. 80 095111Google Scholar

    [26]

    Prasher R S, Simmons C, Solbrekken G L 2000 ASME 2000 International Mechanical Engineering Congress and Exposition Orlando, Florida, USA, November 5–10, 2000 p461

    [27]

    Wu Y M, Ye K, Liu Z D, Wang M J, Chee K W, Lin C T, Jiang N, Yu J 2018 J. Mater. Chem. C 6 6494Google Scholar

    [28]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [29]

    Liu C Q, Chen C, Yu W, Chen M, Zhou D Y, Xie H Q 2020 Int. J. Therm. Sci. 152 106293Google Scholar

    [30]

    Mehra N, Mu L W, Ji T, Yang X T, Kong J, Gu J W, Zhu J H 2018 Appl. Mater. Today 12 92Google Scholar

    [31]

    Fang Z N, Li M, Wang S K, Gu Y Z, Li Y X, Zhang Z G 2019 Int. J. Heat Mass Transfer 137 1103Google Scholar

    [32]

    Eucken A 1940 Forsch. Ingenieurwes. A 11 6Google Scholar

    [33]

    Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar

    [34]

    Fuller J J, Marotta E E 2001 J. Therm. Heat Transfer 15 228Google Scholar

    [35]

    Hill R F, Supancic P H 2005 J. Am. Ceram. Soc. 87 1831Google Scholar

    [36]

    Zhang G Q, Xia Y P, Wang H, Tao Y, Tao G L, Tu S T, Wu H P 2009 J. Compos. Mater. 44 963Google Scholar

  • 图 1  氧化铝/环氧树脂复合材料的制备流程示意图

    Fig. 1.  Schematic illustration of the preparation of Al2O3/epoxy composites.

    图 2  测试原理

    Fig. 2.  Testing principle.

    图 3  样品的总热阻-厚度关系图

    Fig. 3.  Thermal resistance versus sample thickness.

    图 4  不同形貌的氧化铝/环氧树脂复合材料的热导率以及理论拟合图线

    Fig. 4.  The thermal conductivity of different kinds of Al2O3/epoxy composites and theoretical fitting line.

    图 5  协同作用机制的示意图

    Fig. 5.  Schematic diagram of the synergistic mechanism.

    图 6  氧化铝/环氧树脂复合材料的SEM照片 (a) 球形氧化铝分散性; (b) 球形氧化铝的接触; (c) 片状氧化铝的导热通路; (d) 片状氧化铝的接触; (e) 1∶1混合添加的导热通路; (f) 1∶1混合添加的整体分散性

    Fig. 6.  SEM images of Al2O3/epoxy composites: (a) The dispersion of spherical Al2O3; (b) the mutual contact of spherical Al2O3; (c) the thermal conductive pathway of plate-like Al2O3; (d) the mutual contact of plate-like Al2O3; (e) the thermal conductive pathway of fillers mixed of 1∶1 ratio; (f) the dispersion of Al2O3 of fillers mixed of 1∶1 ratio.

    Baidu
  • [1]

    Li S, Zheng Q, Lü Y, Liu X, Wang X, Huang P Y, Cahill D G, Lü B 2018 Science 361 579Google Scholar

    [2]

    Xu X F, Chen J, Zhou J, Li B W 2018 Adv. Mater. 30 1705544Google Scholar

    [3]

    Tian F, Ren Z F 2019 Angew. Chem. Int. Ed. 58 5824Google Scholar

    [4]

    Chen J, Huang X Y, Zhu Y K, Jiang P K 2017 Adv. Funct. Mater. 27 1604754Google Scholar

    [5]

    Lin M Y, Li Y H, Xu K, Ou Y H, Su L F, Feng X, Li J, Qi H S, Liu D 2019 Compos. Sci. Technol. 175 85Google Scholar

    [6]

    Li X X, Yan Y P, Dong L, Guo J, Aiyiti A, Xu X F, Li B W 2017 J. Phys. D: Appl. Phys. 50 104002Google Scholar

    [7]

    Wang L M, Liu Y C, Zhang Z M, Wang B R, Qiu J J, Hui D, Wang S 2017 Compos. B. Eng. 122 145Google Scholar

    [8]

    Choy C L 1977 Polymer 18 984Google Scholar

    [9]

    Henry A 2014 Annu. Rev. Heat Transf. 17 485Google Scholar

    [10]

    Feng H, Tang N, An M, Guo R L, Ma D K, Yu X X, Zang J F, Yang N 2019 J. Phys. Chem. C 123 31003Google Scholar

    [11]

    Zhang C, Huang R J, Wang Y G, Wu Z X, Guo S B, Zhang H, Li J, Huang C J, Wang W, Li L F 2018 J. Mater. Chem. A 6 20663Google Scholar

    [12]

    Zhang T, Sun J J, Ren L L, Yao Y M, Wang M M, Zeng X L, Sun R, Xu J B, Wong C P 2019 Compos. Part A Appl. Sci. Manuf. 121 92Google Scholar

    [13]

    Lu C H, Chiang S W, Du H, Li J, Gan L, Zhang X, Chu X D, Yao Y W, Li B H, Kang F Y 2017 Polymer 115 52Google Scholar

    [14]

    Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N 2021 Nano Energy 82 105749Google Scholar

    [15]

    Zhang W B, Zhang Z X, Yang J H, Huang T, Zhang N, Zheng X T, Wang Y, Zhou Z W 2015 Carbon 90 242Google Scholar

    [16]

    Li Z L, Ju D D, Han L J, Dong L S 2017 Thermochim. Acta. 652 9Google Scholar

    [17]

    McCue J P 1973 Coord. Chem. Rev. 10 265Google Scholar

    [18]

    Bruggeman D A G 1935 Ann. Phys. 416 636Google Scholar

    [19]

    Wang Y W, Weng G J, Meguid S A, Hamouda A M 2014 J. Appl. Phys. 115 193706Google Scholar

    [20]

    Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar

    [21]

    Coleman J N, Khan U, Blau W J, Gun’ko Y K 2006 Carbon 44 1624Google Scholar

    [22]

    Zheng R, Gao J, Wang J, Feng S P, Ohtani H, Wang J, Chen G 2012 Nano Lett. 12 188Google Scholar

    [23]

    Shi B, Dong L, Li M Q, Liu B, Kim K, Xu X F, Zhou J, Liu J 2018 Appl. Phys. Lett. 113 041902Google Scholar

    [24]

    潘东楷, 宗志成, 杨诺 2022 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [25]

    Kempers R, Kolodner P, Lyons A, Robinson A J 2009 Rev. Sci. Instrum. 80 095111Google Scholar

    [26]

    Prasher R S, Simmons C, Solbrekken G L 2000 ASME 2000 International Mechanical Engineering Congress and Exposition Orlando, Florida, USA, November 5–10, 2000 p461

    [27]

    Wu Y M, Ye K, Liu Z D, Wang M J, Chee K W, Lin C T, Jiang N, Yu J 2018 J. Mater. Chem. C 6 6494Google Scholar

    [28]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [29]

    Liu C Q, Chen C, Yu W, Chen M, Zhou D Y, Xie H Q 2020 Int. J. Therm. Sci. 152 106293Google Scholar

    [30]

    Mehra N, Mu L W, Ji T, Yang X T, Kong J, Gu J W, Zhu J H 2018 Appl. Mater. Today 12 92Google Scholar

    [31]

    Fang Z N, Li M, Wang S K, Gu Y Z, Li Y X, Zhang Z G 2019 Int. J. Heat Mass Transfer 137 1103Google Scholar

    [32]

    Eucken A 1940 Forsch. Ingenieurwes. A 11 6Google Scholar

    [33]

    Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar

    [34]

    Fuller J J, Marotta E E 2001 J. Therm. Heat Transfer 15 228Google Scholar

    [35]

    Hill R F, Supancic P H 2005 J. Am. Ceram. Soc. 87 1831Google Scholar

    [36]

    Zhang G Q, Xia Y P, Wang H, Tao Y, Tao G L, Tu S T, Wu H P 2009 J. Compos. Mater. 44 963Google Scholar

  • [1] 王奥, 盛宇飞, 鲍华. 金属导热理论的研究进展与前沿问题.  , 2024, 73(3): 037201. doi: 10.7498/aps.73.20231151
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [4] 刘裕芮, 许艳菲. 导热高分子聚合物研究进展.  , 2022, 71(2): 023601. doi: 10.7498/aps.71.20211876
    [5] 曹炳阳, 张梓彤. 热智能材料及其在空间热控中的应用.  , 2022, 71(1): 014401. doi: 10.7498/aps.71.20211889
    [6] 刘英光, 薛新强, 张静文, 任国梁. 基于界面原子混合的材料导热性能.  , 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [7] 安盟, 孙旭辉, 陈东升, 杨诺. 石墨烯基复合热界面材料导热性能研究进展.  , 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [8] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究.  , 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [9] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应.  , 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [10] 施亨宪, 杨凯科, 骆军委. III-V族硼基化合物半导体反常热导率机理.  , 2021, 70(14): 147302. doi: 10.7498/aps.70.20210797
    [11] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟.  , 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [12] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [13] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究.  , 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [16] 张飞鹏, 段坤杰, 曾宏, 张久兴. Ba/Ag双掺杂对Ca3Co4O9基热电氧化物热传输性能的影响.  , 2013, 62(18): 187201. doi: 10.7498/aps.62.187201
    [17] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象.  , 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [18] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究.  , 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [19] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究.  , 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究.  , 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
计量
  • 文章访问数:  4329
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-10-24
  • 上网日期:  2022-11-03
  • 刊出日期:  2023-01-20

/

返回文章
返回
Baidu
map