搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导热高分子聚合物研究进展

刘裕芮 许艳菲

引用本文:
Citation:

导热高分子聚合物研究进展

刘裕芮, 许艳菲

Research progress of polymers with high thermal conductivity

Liu Yu-Rui, Xu Yan-Fei
PDF
HTML
导出引用
  • 传统高分子聚合物是良好的电绝缘体和热绝缘体. 高分子聚合物具备质量轻、耐腐蚀、可加工、可穿戴、电绝缘、低成本等优异特性. 高分子聚合物被广泛应用于各种器件. 由于高分子材料的热导率比较低(0.1—0.5 W·m–1·K–1), 热管理(散热)面临严峻的挑战. 理论及实验工作表明, 先进高分子材料可以具有比传统传热材料(金属和陶瓷)更高热导率. Fermi-Pasta-Ulam (FPU)理论结果发现低维度原子链具有非常高的热导率. 广泛使用的聚乙烯热绝缘体可以被转变为热导体: 拉伸聚乙烯纳米纤维的热导率大约为104 W·m–1·K–1, 拉伸的聚乙烯薄膜热导率大约为62 W·m–1·K–1. 首先, 本文通过理论和实验结果总结导热高分子材料的传热机理研究进展, 并讨论了导热高分子聚合物的制备策略; 然后, 讨论了在传热机制及宏量制备方面, 高分子聚合物研究领域所面临的新挑战; 最后, 对导热高分子的热管理应用前景进行了展望. 例如, 导热高分子聚合物在耐腐蚀散热片、低成本太阳能热水收集器、可穿戴智能冷却服饰、电子绝缘却高导热的电子封装材料等领域具有不可替代的热管理应用前景.
    Developing thermally conductive polymers is of fundamental interest and technological importance. Common polymers have low thermal conductivities on the order of 0.1 W·m–1·K–1 and thus are regarded as thermal insulators. Compared with the traditional heat conductors (metals and ceramics), polymers have unparalleled combined properties such as light weight, corrosion resistance, electrical insulation and low cost. Turning polymer insulators into heat conductors will provide new opportunities for future thermal management applications. Polymers may replace many metals and ceramics, serving as lightweight heat dissipators in electronics, refrigerators, and electrical vehicles.In this review and perspectives, we discuss the research progress of thermal transport mechanisms in polymers and reveal the relations between thermal conductivity and polymer structural parameters such as bond strength, crystallinity, crystallite size, chain orientation, radius of gyration, and molecular weight. We discuss the advanced strategies for developing thermally conductive polymers by both bottom-up and top-down approaches. We highlight how thermally conductive polymers provide new opportunities for thermal management applications. Finally, we emphasize the future challenges to and opportunities for designing and synthesizing polymers with metal-like thermal conductivity and exploring the thermal transport physics in polymers. We believe that the thermally conductive polymers with their unparalleled combination of characteristics (light weight, electrical insulation, easy processability, corrosion resistance, etc.) promise to possess many existing and unforeseen thermal management applications.
      通信作者: 许艳菲, yanfeixu@umass.edu
    • 基金项目: 美国阿莫赫斯特马萨诸塞大学教师启动基金资助的课题.
      Corresponding author: Xu Yan-Fei, yanfeixu@umass.edu
    • Funds: Project supported by the Faculty Startup Fund Support from University of Massachusetts Amherst, USA
    [1]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [2]

    Schelling P K, Shi L, Goodson K E 2005 Mater. Today 8 30

    [3]

    Pop E, Goodson K E 2006 J. Electron. Packag. 128 102Google Scholar

    [4]

    Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (New York: Oxford University Press)

    [5]

    Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S, Qiu C W 2021 Nat. Rev. Mater. 6 488Google Scholar

    [6]

    Hao M, Li J, Park S, Moura S, Dames C 2018 Nat. Energy 3 899Google Scholar

    [7]

    Xia G, Cao L, Bi G 2017 J. Power Sources 367 90Google Scholar

    [8]

    Feng C P, Yang L Y, Yang J, Bai L, Bao R Y, Liu Z Y, Yang M B, Lan H B, Yang W 2020 Compos. Commun. 22 100528Google Scholar

    [9]

    Huaiyu Y, Koh S, van Zeijl H, Gielen A, Guoqi Z 2011 J. Semicond. 32 014008Google Scholar

    [10]

    Siricharoenpanich A, Wiriyasart S, Srichat A, Naphon P 2019 Case Stud. Therm. Eng. 15 100545Google Scholar

    [11]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [12]

    Chen M, Dongxu O, Liu J, Wang J 2019 Appl. Therm. Eng. 157 113750Google Scholar

    [13]

    Sklan S R, Li B 2018 Natl. Sci. Rev. 5 138Google Scholar

    [14]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203Google Scholar

    [15]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [16]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [17]

    Chen K, Song B, Ravichandran N K, Zheng Q, Chen X, Lee H, Sun H, Li S, Gamage G A G U, Tian F 2020 Science 367 555Google Scholar

    [18]

    Tian F, Song B, Chen X, Ravichandran N K, Lü Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H 2018 Science 361 582Google Scholar

    [19]

    Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575Google Scholar

    [20]

    Li S, Zheng Q, Lü Y, Liu X, Wang X, Huang P Y, Cahill D G, Lü B 2018 Science 361 579Google Scholar

    [21]

    Shen S, Henry A, Tong J, Zheng R, Chen G 2010 Nat. Nanotechnol. 5 251Google Scholar

    [22]

    Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188Google Scholar

    [23]

    Lienhard J H, IV, Lienhard, John H, V 2019 A Heat Transfer Textbook (5th Ed.) (New York: Dover Publications)

    [24]

    Henry A 2014 Annu. Rev. Heat Transfer 17 485Google Scholar

    [25]

    Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar

    [26]

    Anderson D 1966 Chem. Rev. 66 677Google Scholar

    [27]

    Guo Y, Ruan K, Shi X, Yang X, Gu J 2020 Compos. Sci. Technol. 193 108134Google Scholar

    [28]

    Choy C 1977 Polymer 18 984Google Scholar

    [29]

    Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92Google Scholar

    [30]

    Chen G 2014 Annu. Rev. Heat Transfer 17 1Google Scholar

    [31]

    Guo Y, Zhou Y, Xu Y 2021 Polymer 233 124168Google Scholar

    [32]

    Wei X, Wang Z, Tian Z, Luo T 2021 J. Heat Transfer 143 072101Google Scholar

    [33]

    Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. , R 132 1Google Scholar

    [34]

    Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [35]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [36]

    Chen G 2021 Nat. Rev. Phys. 3 555Google Scholar

    [37]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Report No. LA-1940 (New Mexico, United States: Los Alamos Scientific Lab.)

    [38]

    Choy C, Wong Y, Yang G, Kanamoto T 1999 J. Polym. Sci., Part B:Polym. Phys. 37 3359Google Scholar

    [39]

    Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X 2019 Nat. Commun. 10 1771Google Scholar

    [40]

    Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lü W, Resler D P, Gattuso T R 2014 Nat. Nanotechnol. 9 384Google Scholar

    [41]

    Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar

    [42]

    Gibson A, Greig D, Sahota M, Ward I, Choy C 1977 J. Polym. Sci., Polym. Lett. Ed. 15 183Google Scholar

    [43]

    Choy C, Luk W, Chen F 1978 Polymer 19 155Google Scholar

    [44]

    Mergenthaler D, Pietralla M, Roy S, Kilian H J M 1992 Macromolecules 25 3500Google Scholar

    [45]

    Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A 2011 Polymer 52 1711Google Scholar

    [46]

    Ma J, Zhang Q, Mayo A, Ni Z, Yi H, Chen Y, Mu R, Bellan L M, Li D 2015 Nanoscale 7 16899Google Scholar

    [47]

    Ronca S, Igarashi T, Forte G, Rastogi S 2017 Polymer 123 203Google Scholar

    [48]

    Zhu B, Liu J, Wang T, Han M, Valloppilly S, Xu S, Wang X 2017 ACS Omega 2 3931Google Scholar

    [49]

    Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M 2019 Polymer 180 121760Google Scholar

    [50]

    Pan X, Schenning A H, Shen L, Bastiaansen C W 2020 Macromolecules 53 5599Google Scholar

    [51]

    Sweet J, Roth E, Moss M 1987 Int. J. Thermophys. 8 593Google Scholar

    [52]

    Som S 2008 Introduction to Heat transfer (New Delhi: PHI learning Pvt. Ltd.)

    [53]

    Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar

    [54]

    Henry A, Chen G, Plimpton S J, Thompson A 2010 Phys. Rev. B. 82 144308Google Scholar

    [55]

    Xiao M, Du B X 2016 High Volt. 1 34Google Scholar

    [56]

    Zhang T, Wu X, Luo T 2014 J. Phys. Chem. C. 118 21148Google Scholar

    [57]

    Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342Google Scholar

    [58]

    Robbins A B, Drakopoulos S X, Martin-Fabiani I, Ronca S, Minnich A J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17163Google Scholar

    [59]

    Cevallos J G, Bergles A E, Bar-Cohen A, Rodgers P, Gupta S K 2012 Heat Transfer Eng. 33 1075Google Scholar

    [60]

    Sæther S, Falck M, Zhang Z, Lervik A, He J 2021 Macromolecules 54 6563Google Scholar

    [61]

    Hansen D, Bernier G 1972 Polym. Eng. Sci. 12 204Google Scholar

    [62]

    Liu J, Yang R 2012 Phys. Rev. B. 86 104307Google Scholar

    [63]

    Wei X, Luo T 2019 Phys. Chem. Chem. Phys. 21 15523Google Scholar

    [64]

    Zhang T, Luo T 2016 J. Phys. Chem. B 120 803Google Scholar

    [65]

    Subramanyan H, Zhang W, He J, Kim K, Li X, Liu J 2019 J. Appl. Phys. 125 095104Google Scholar

    [66]

    Zhang T, Luo T 2012 J. Appl. Phys. 112 094304Google Scholar

    [67]

    Wei X, Zhang T, Luo T 2016 Phys. Chem. Chem. Phys. 18 32146Google Scholar

    [68]

    Lin S, Cai Z, Wang Y, Zhao L, Zhai C 2019 Comput. Mater. Sci. 5 126

    [69]

    Akatsuka M, Takezawa Y 2003 J. Appl. Polym. Sci. 89 2464Google Scholar

    [70]

    Ruan K, Zhong X, Shi X, Dang J, Gu J 2021 Mater. Today Phys. 20 100456Google Scholar

    [71]

    Wei X, Huang Z, Koch S, Zamengo M, Deng Y, Minus M L, Morikawa J, Guo R, Luo T 2021 ACS Appl. Polym. Mater. 3 2979Google Scholar

    [72]

    Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H 2021 Polym. Chem. 12 975Google Scholar

    [73]

    Chen A, Wu Y, Zhou S, Xu W, Jiang W, Lü Y, Guo W, Chi K, Sun Q, Fu T 2020 Mater. Adv. 1 1996Google Scholar

    [74]

    Kikugawa G, Desai T G, Keblinski P, Ohara T 2013 J. Appl. Phys. 114 034302Google Scholar

    [75]

    Knappe W, Yamamoto O 1970 Kolloid-Zeitschrift und Zeitschrift für Polymere 240 775

    [76]

    Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843Google Scholar

    [77]

    Ma H, Ma Y, Tian Z 2019 ACS Appl. Polym. Mater. 1 2566

    [78]

    Nomura R, Yoneyama K, Ogasawara F, Ueno M, Okuda Y, Yamanaka A 2003 Jpn. J. Appl. Phys. 42 5205Google Scholar

    [79]

    Hsieh W-P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G 2011 Phys. Rev. B. 83 174205Google Scholar

    [80]

    Zhang T, Xu J, Luo T 2020 https://arxiv.org/abs/2009.13708

    [81]

    Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A. 9 24472Google Scholar

    [82]

    Deng S, Yuan J, Lin Y, Yu X, Ma D, Huang Y, Ji R, Zhang G, Yang N 2021 Nano Energy 82 105749Google Scholar

    [83]

    Zhang Y, Zhang X, Yang L, Zhang Q, Fitzgerald M L, Ueda A, Chen Y, Mu R, Li D, Bellan L M 2018 Soft matter 14 9534Google Scholar

    [84]

    Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031Google Scholar

    [85]

    Xie X, Li D, Tsai T H, Liu J, Braun P V, Cahill D G 2016 Macromolecules 49 972Google Scholar

    [86]

    Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phys. Lett. 38 014401Google Scholar

    [87]

    Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, De Boer M P 2018 Nat. Commun. 9 1664Google Scholar

    [88]

    Donovan B F, Warzoha R J, Cosby T, Giri A, Wilson A A, Borgdorff A J, Vu N T, Patterson E A, Gorzkowski E P 2020 Macromolecules 53 11089Google Scholar

    [89]

    Richard-Lacroix M, Pellerin C 2013 Macromolecules 46 9473Google Scholar

    [90]

    Canetta C, Guo S, Narayanaswamy A 2014 Rev. Sci. Instrum. 85 104901Google Scholar

    [91]

    Lu C, Chiang S W, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F 2017 Polymer 115 52Google Scholar

    [92]

    Laaber D, Bart H J 2015 Chem. Ing. Tech. 87 306Google Scholar

    [93]

    Chen X, Su Y, Reay D, Riffat S 2016 Renewable Sustainable Energy Rev. 60 1367Google Scholar

    [94]

    Shi A, Li Y, Liu W, Lei J, Li Z M 2019 J. Appl. Phys. 125 245110Google Scholar

    [95]

    Wang X, Ho V, Segalman R A, Cahill D G 2013 Macromolecules 46 4937Google Scholar

    [96]

    Ghasemi H, Thoppey N, Huang X, Loomis J, Li X, Tong J, Wang J, Chen G 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando Florida, USA, May 27−30, 2014 pp235−239

    [97]

    Ma J, Zhang Q, Zhang Y, Zhou L, Yang J, Ni Z 2016 Appl. Phys. Lett. 109 033101Google Scholar

    [98]

    Shulumba N, Hellman O, Minnich A 2017 Phys. Rev. Lett. 119 185901Google Scholar

    [99]

    Roy A, Bougher T L, Geng R, Ke Y, Locklin J, Cola B A 2016 ACS Appl. Mater. Interfaces 8 25578Google Scholar

    [100]

    Rojo M M, Martín J, Grauby S, Borca-Tasciuc T, Dilhaire S, Martin-Gonzalez M 2014 Nanoscale 6 7858Google Scholar

    [101]

    Hamidnia M, Luo Y, Wang X 2018 Appl. Therm. Eng. 145 637Google Scholar

    [102]

    Tong J K, Huang X, Boriskina S V, Loomis J, Xu Y, Chen G 2015 ACS Photonics 2 769Google Scholar

    [103]

    Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y 2016 Science 353 1019Google Scholar

    [104]

    Peng Y, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L, Liu B, Zhu Y, Zhou G, Wu D S 2018 Nat. Sustainability 1 105Google Scholar

    [105]

    Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M 2021 Science 373 692Google Scholar

    [106]

    Yu X, Li Y, Wang X, Si Y, Yu J, Ding B 2020 ACS Appl. Mater. Interfaces 12 32078Google Scholar

    [107]

    Alberghini M, Hong S, Lozano L M, Korolovych V, Huang Y, Signorato F, Zandavi S H, Fucetola C, Uluturk I, Tolstorukov M Y 2021 Nat. Sustainability 4 715Google Scholar

    [108]

    Wang Y, Liang X, Zhu H, Xin J H, Zhang Q, Zhu S 2020 Adv. Funct. Mater. 30 1907851Google Scholar

    [109]

    Candadai A A, Weibel J A, Marconnet A M 2019 ACS Appl. Polym. Mater. 2 437Google Scholar

    [110]

    Candadai A A, Nadler E J, Burke J S, Weibel J A, Marconnet A M 2021 Sci. Rep. 11 8705Google Scholar

  • 图 1  微纳尺度及原子尺度下的高分子结构. 高分子链端、无定型链、链缠结、杂质等缺陷都可能成为热载流子散射点, 导致高分子聚合物高分子的热导率比较低 (约0.1 W·m–1·K–1)[24]

    Fig. 1.  Polymer structures at micro-nano scale and atomic scale. Defects such as chain ends, amorphous chains, chain entanglement, impurities in polymers act as heat carrier scattering sites and hinder efficient thermal transport, result in relatively low thermal conductivity (about 0.1 W·m–1·K–1)[24].

    图 2  室温下聚乙烯(PE)的热导率实验数据[21,38,39,43-50,58,83,87,94-97]及模拟值[35,54,98]; 室温下聚噻吩(PT)的热导率实验数据[39,40,99,100]及模拟值[56]

    Fig. 2.  Thermal conductivities of polyethylene at room temperature in experimental measurements[21,38,39,43-50,58,83,87,94-97]and simulations[35,54,98]. Thermal conductivities of polythiophene at room temperature in experimental measurements[39,40,99,100]and simulations[56].

    Baidu
  • [1]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [2]

    Schelling P K, Shi L, Goodson K E 2005 Mater. Today 8 30

    [3]

    Pop E, Goodson K E 2006 J. Electron. Packag. 128 102Google Scholar

    [4]

    Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (New York: Oxford University Press)

    [5]

    Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S, Qiu C W 2021 Nat. Rev. Mater. 6 488Google Scholar

    [6]

    Hao M, Li J, Park S, Moura S, Dames C 2018 Nat. Energy 3 899Google Scholar

    [7]

    Xia G, Cao L, Bi G 2017 J. Power Sources 367 90Google Scholar

    [8]

    Feng C P, Yang L Y, Yang J, Bai L, Bao R Y, Liu Z Y, Yang M B, Lan H B, Yang W 2020 Compos. Commun. 22 100528Google Scholar

    [9]

    Huaiyu Y, Koh S, van Zeijl H, Gielen A, Guoqi Z 2011 J. Semicond. 32 014008Google Scholar

    [10]

    Siricharoenpanich A, Wiriyasart S, Srichat A, Naphon P 2019 Case Stud. Therm. Eng. 15 100545Google Scholar

    [11]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [12]

    Chen M, Dongxu O, Liu J, Wang J 2019 Appl. Therm. Eng. 157 113750Google Scholar

    [13]

    Sklan S R, Li B 2018 Natl. Sci. Rev. 5 138Google Scholar

    [14]

    Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S 2012 Nat. Mater. 11 203Google Scholar

    [15]

    Balandin A A 2011 Nat. Mater. 10 569Google Scholar

    [16]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [17]

    Chen K, Song B, Ravichandran N K, Zheng Q, Chen X, Lee H, Sun H, Li S, Gamage G A G U, Tian F 2020 Science 367 555Google Scholar

    [18]

    Tian F, Song B, Chen X, Ravichandran N K, Lü Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H 2018 Science 361 582Google Scholar

    [19]

    Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575Google Scholar

    [20]

    Li S, Zheng Q, Lü Y, Liu X, Wang X, Huang P Y, Cahill D G, Lü B 2018 Science 361 579Google Scholar

    [21]

    Shen S, Henry A, Tong J, Zheng R, Chen G 2010 Nat. Nanotechnol. 5 251Google Scholar

    [22]

    Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188Google Scholar

    [23]

    Lienhard J H, IV, Lienhard, John H, V 2019 A Heat Transfer Textbook (5th Ed.) (New York: Dover Publications)

    [24]

    Henry A 2014 Annu. Rev. Heat Transfer 17 485Google Scholar

    [25]

    Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar

    [26]

    Anderson D 1966 Chem. Rev. 66 677Google Scholar

    [27]

    Guo Y, Ruan K, Shi X, Yang X, Gu J 2020 Compos. Sci. Technol. 193 108134Google Scholar

    [28]

    Choy C 1977 Polymer 18 984Google Scholar

    [29]

    Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92Google Scholar

    [30]

    Chen G 2014 Annu. Rev. Heat Transfer 17 1Google Scholar

    [31]

    Guo Y, Zhou Y, Xu Y 2021 Polymer 233 124168Google Scholar

    [32]

    Wei X, Wang Z, Tian Z, Luo T 2021 J. Heat Transfer 143 072101Google Scholar

    [33]

    Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. , R 132 1Google Scholar

    [34]

    Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [35]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [36]

    Chen G 2021 Nat. Rev. Phys. 3 555Google Scholar

    [37]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Report No. LA-1940 (New Mexico, United States: Los Alamos Scientific Lab.)

    [38]

    Choy C, Wong Y, Yang G, Kanamoto T 1999 J. Polym. Sci., Part B:Polym. Phys. 37 3359Google Scholar

    [39]

    Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X 2019 Nat. Commun. 10 1771Google Scholar

    [40]

    Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lü W, Resler D P, Gattuso T R 2014 Nat. Nanotechnol. 9 384Google Scholar

    [41]

    Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar

    [42]

    Gibson A, Greig D, Sahota M, Ward I, Choy C 1977 J. Polym. Sci., Polym. Lett. Ed. 15 183Google Scholar

    [43]

    Choy C, Luk W, Chen F 1978 Polymer 19 155Google Scholar

    [44]

    Mergenthaler D, Pietralla M, Roy S, Kilian H J M 1992 Macromolecules 25 3500Google Scholar

    [45]

    Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A 2011 Polymer 52 1711Google Scholar

    [46]

    Ma J, Zhang Q, Mayo A, Ni Z, Yi H, Chen Y, Mu R, Bellan L M, Li D 2015 Nanoscale 7 16899Google Scholar

    [47]

    Ronca S, Igarashi T, Forte G, Rastogi S 2017 Polymer 123 203Google Scholar

    [48]

    Zhu B, Liu J, Wang T, Han M, Valloppilly S, Xu S, Wang X 2017 ACS Omega 2 3931Google Scholar

    [49]

    Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M 2019 Polymer 180 121760Google Scholar

    [50]

    Pan X, Schenning A H, Shen L, Bastiaansen C W 2020 Macromolecules 53 5599Google Scholar

    [51]

    Sweet J, Roth E, Moss M 1987 Int. J. Thermophys. 8 593Google Scholar

    [52]

    Som S 2008 Introduction to Heat transfer (New Delhi: PHI learning Pvt. Ltd.)

    [53]

    Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R 2003 J. Appl. Phys. 93 793Google Scholar

    [54]

    Henry A, Chen G, Plimpton S J, Thompson A 2010 Phys. Rev. B. 82 144308Google Scholar

    [55]

    Xiao M, Du B X 2016 High Volt. 1 34Google Scholar

    [56]

    Zhang T, Wu X, Luo T 2014 J. Phys. Chem. C. 118 21148Google Scholar

    [57]

    Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342Google Scholar

    [58]

    Robbins A B, Drakopoulos S X, Martin-Fabiani I, Ronca S, Minnich A J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17163Google Scholar

    [59]

    Cevallos J G, Bergles A E, Bar-Cohen A, Rodgers P, Gupta S K 2012 Heat Transfer Eng. 33 1075Google Scholar

    [60]

    Sæther S, Falck M, Zhang Z, Lervik A, He J 2021 Macromolecules 54 6563Google Scholar

    [61]

    Hansen D, Bernier G 1972 Polym. Eng. Sci. 12 204Google Scholar

    [62]

    Liu J, Yang R 2012 Phys. Rev. B. 86 104307Google Scholar

    [63]

    Wei X, Luo T 2019 Phys. Chem. Chem. Phys. 21 15523Google Scholar

    [64]

    Zhang T, Luo T 2016 J. Phys. Chem. B 120 803Google Scholar

    [65]

    Subramanyan H, Zhang W, He J, Kim K, Li X, Liu J 2019 J. Appl. Phys. 125 095104Google Scholar

    [66]

    Zhang T, Luo T 2012 J. Appl. Phys. 112 094304Google Scholar

    [67]

    Wei X, Zhang T, Luo T 2016 Phys. Chem. Chem. Phys. 18 32146Google Scholar

    [68]

    Lin S, Cai Z, Wang Y, Zhao L, Zhai C 2019 Comput. Mater. Sci. 5 126

    [69]

    Akatsuka M, Takezawa Y 2003 J. Appl. Polym. Sci. 89 2464Google Scholar

    [70]

    Ruan K, Zhong X, Shi X, Dang J, Gu J 2021 Mater. Today Phys. 20 100456Google Scholar

    [71]

    Wei X, Huang Z, Koch S, Zamengo M, Deng Y, Minus M L, Morikawa J, Guo R, Luo T 2021 ACS Appl. Polym. Mater. 3 2979Google Scholar

    [72]

    Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H 2021 Polym. Chem. 12 975Google Scholar

    [73]

    Chen A, Wu Y, Zhou S, Xu W, Jiang W, Lü Y, Guo W, Chi K, Sun Q, Fu T 2020 Mater. Adv. 1 1996Google Scholar

    [74]

    Kikugawa G, Desai T G, Keblinski P, Ohara T 2013 J. Appl. Phys. 114 034302Google Scholar

    [75]

    Knappe W, Yamamoto O 1970 Kolloid-Zeitschrift und Zeitschrift für Polymere 240 775

    [76]

    Toberer E S, Zevalkink A, Snyder G J 2011 J. Mater. Chem. 21 15843Google Scholar

    [77]

    Ma H, Ma Y, Tian Z 2019 ACS Appl. Polym. Mater. 1 2566

    [78]

    Nomura R, Yoneyama K, Ogasawara F, Ueno M, Okuda Y, Yamanaka A 2003 Jpn. J. Appl. Phys. 42 5205Google Scholar

    [79]

    Hsieh W-P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G 2011 Phys. Rev. B. 83 174205Google Scholar

    [80]

    Zhang T, Xu J, Luo T 2020 https://arxiv.org/abs/2009.13708

    [81]

    Deng S, Ma D, Zhang G, Yang N 2021 J. Mater. Chem. A. 9 24472Google Scholar

    [82]

    Deng S, Yuan J, Lin Y, Yu X, Ma D, Huang Y, Ji R, Zhang G, Yang N 2021 Nano Energy 82 105749Google Scholar

    [83]

    Zhang Y, Zhang X, Yang L, Zhang Q, Fitzgerald M L, Ueda A, Chen Y, Mu R, Li D, Bellan L M 2018 Soft matter 14 9534Google Scholar

    [84]

    Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031Google Scholar

    [85]

    Xie X, Li D, Tsai T H, Liu J, Braun P V, Cahill D G 2016 Macromolecules 49 972Google Scholar

    [86]

    Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phys. Lett. 38 014401Google Scholar

    [87]

    Shrestha R, Li P, Chatterjee B, Zheng T, Wu X, Liu Z, Luo T, Choi S, Hippalgaonkar K, De Boer M P 2018 Nat. Commun. 9 1664Google Scholar

    [88]

    Donovan B F, Warzoha R J, Cosby T, Giri A, Wilson A A, Borgdorff A J, Vu N T, Patterson E A, Gorzkowski E P 2020 Macromolecules 53 11089Google Scholar

    [89]

    Richard-Lacroix M, Pellerin C 2013 Macromolecules 46 9473Google Scholar

    [90]

    Canetta C, Guo S, Narayanaswamy A 2014 Rev. Sci. Instrum. 85 104901Google Scholar

    [91]

    Lu C, Chiang S W, Du H, Li J, Gan L, Zhang X, Chu X, Yao Y, Li B, Kang F 2017 Polymer 115 52Google Scholar

    [92]

    Laaber D, Bart H J 2015 Chem. Ing. Tech. 87 306Google Scholar

    [93]

    Chen X, Su Y, Reay D, Riffat S 2016 Renewable Sustainable Energy Rev. 60 1367Google Scholar

    [94]

    Shi A, Li Y, Liu W, Lei J, Li Z M 2019 J. Appl. Phys. 125 245110Google Scholar

    [95]

    Wang X, Ho V, Segalman R A, Cahill D G 2013 Macromolecules 46 4937Google Scholar

    [96]

    Ghasemi H, Thoppey N, Huang X, Loomis J, Li X, Tong J, Wang J, Chen G 2014 Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) Orlando Florida, USA, May 27−30, 2014 pp235−239

    [97]

    Ma J, Zhang Q, Zhang Y, Zhou L, Yang J, Ni Z 2016 Appl. Phys. Lett. 109 033101Google Scholar

    [98]

    Shulumba N, Hellman O, Minnich A 2017 Phys. Rev. Lett. 119 185901Google Scholar

    [99]

    Roy A, Bougher T L, Geng R, Ke Y, Locklin J, Cola B A 2016 ACS Appl. Mater. Interfaces 8 25578Google Scholar

    [100]

    Rojo M M, Martín J, Grauby S, Borca-Tasciuc T, Dilhaire S, Martin-Gonzalez M 2014 Nanoscale 6 7858Google Scholar

    [101]

    Hamidnia M, Luo Y, Wang X 2018 Appl. Therm. Eng. 145 637Google Scholar

    [102]

    Tong J K, Huang X, Boriskina S V, Loomis J, Xu Y, Chen G 2015 ACS Photonics 2 769Google Scholar

    [103]

    Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y 2016 Science 353 1019Google Scholar

    [104]

    Peng Y, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L, Liu B, Zhu Y, Zhou G, Wu D S 2018 Nat. Sustainability 1 105Google Scholar

    [105]

    Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M 2021 Science 373 692Google Scholar

    [106]

    Yu X, Li Y, Wang X, Si Y, Yu J, Ding B 2020 ACS Appl. Mater. Interfaces 12 32078Google Scholar

    [107]

    Alberghini M, Hong S, Lozano L M, Korolovych V, Huang Y, Signorato F, Zandavi S H, Fucetola C, Uluturk I, Tolstorukov M Y 2021 Nat. Sustainability 4 715Google Scholar

    [108]

    Wang Y, Liang X, Zhu H, Xin J H, Zhang Q, Zhu S 2020 Adv. Funct. Mater. 30 1907851Google Scholar

    [109]

    Candadai A A, Weibel J A, Marconnet A M 2019 ACS Appl. Polym. Mater. 2 437Google Scholar

    [110]

    Candadai A A, Nadler E J, Burke J S, Weibel J A, Marconnet A M 2021 Sci. Rep. 11 8705Google Scholar

  • [1] 王奥, 盛宇飞, 鲍华. 金属导热理论的研究进展与前沿问题.  , 2024, 73(3): 037201. doi: 10.7498/aps.73.20231151
    [2] 徐浩哲, 徐象繁. Al2O3基导热聚合物中的热逾渗网络.  , 2023, 72(2): 024401. doi: 10.7498/aps.72.20221400
    [3] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [4] 安盟, 孙旭辉, 陈东升, 杨诺. 石墨烯基复合热界面材料导热性能研究进展.  , 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [5] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展.  , 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [6] 刘英光, 薛新强, 张静文, 任国梁. 基于界面原子混合的材料导热性能.  , 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [7] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [8] 刘英光, 任国梁, 郝将帅, 张静文, 薛新强. 含有倾斜界面硅/锗超晶格的导热性能.  , 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [9] 刘英光, 郝将帅, 任国梁, 张静文. 不同周期结构硅锗超晶格导热性能研究.  , 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [10] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析.  , 2021, (): . doi: 10.7498/aps.70.20211857
    [11] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟.  , 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [12] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [13] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [14] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [15] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [16] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [17] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象.  , 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [18] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟.  , 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [19] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [20] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟.  , 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
计量
  • 文章访问数:  10883
  • PDF下载量:  446
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 修回日期:  2021-11-12
  • 上网日期:  2022-01-15
  • 刊出日期:  2022-01-20

/

返回文章
返回
Baidu
map