搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi/Sb原子置换位置对Mg2Si0.375Sn0.625合金电子传输性能的影响

李鑫 谢辉 张亚龙 马莹 张军涛 苏恒杰

引用本文:
Citation:

Bi/Sb原子置换位置对Mg2Si0.375Sn0.625合金电子传输性能的影响

李鑫, 谢辉, 张亚龙, 马莹, 张军涛, 苏恒杰

Effect of Sb/Bi atom substitution site on electronic transport properties of Mg2Si0.375Sn0.625 alloy

Li Xin, Xie Hui, Zhang Ya-Long, Ma Ying, Zhang Jun-Tao, Su Heng-Jie
PDF
HTML
导出引用
  • 中温区Mg2(Si, Sn)基热电材料因其廉价、无毒无害等优点极具发展潜力. 其中, 三元Mg2Si1–xSnx合金的电子传输性能须通过元素掺杂来进行优化, 最常见的掺杂元素Bi和Sb均可以对载流子浓度、迁移率和有效质量等传输性能参数进行调节, 而不同的原子置换位置会对合金的电子传输特性产生较大的影响. 因此, 本文采用第一性原理计算的方法, 对Sb, Bi元素分别置换Si, Sn位置的缺陷形成能进行了分析, 结合能带结构和态密度的变化分析其对载流子传输性能参数的影响. 通过甩带快速凝固方法制备了Bi, Sb掺杂Mg2Si1–xSnx晶体, 结合求解Boltzmann方程对电子传输性能的预测结果进行对比分析. 结果表明, Bi, Sb原子均更加倾向于取代Si位, Sb原子的取代具有更低的形成能. 与Bi元素相比, 相同成分的Sb掺杂下载流子浓度较低, 但可以提供更大的载流子有效质量, 因此可以获得更高的Seebeck系数和功率因子, 最高值可达–228 μV/K和4.49 mW/(m·K2), 而Bi掺杂可以提供更高的电导率. 本研究结果可以为掺杂优化Mg2(Si, Sn)基合金的热电性能提供理论参考.
    Mg2(Si,Sn)-based thermoelectric materials, which are environmentally friendly and low-cost, have great development potential in a moderate temperature range. Electronic transport properties of Mg2Si1-xSnx alloys can be optimized by doping elements. Doping is still one of the most effective methods of optimizing electronic transport performance, such as carrier concentration, mobility, and effective mass. The most effective doping elements are Sb and Bi. Much attention has been paid to the influence of element type and doping content. Different substitution sites will also greatly affect the electronic transport parameters. In this work, the defect formation energy value of Mg2Si0.375Sn0.625 alloy for substituting Sb atoms and Bi atoms for Sn sties and Si sites, respectively, are calculated by first-principles calculations. The influence on electronic transport parameters is systematically analyzed by combining the calculated results of band structures and density of states. Corresponding component Sb and Bi atoms doped Mg2Si0.375Sn0.625 alloys are prepared by rapid solidification method, and microstructures, Seebeck coefficients, and electrical conductivities of the alloys are measured. Combined with the predicted results by solving the Boltzmann transport equation, electronic transport performances are compared and analyzed. The results indicate that both Sn and Si sites are equally susceptible to Sb and Bi doping, but the Si sites are preferentially substituted due to their lower ∆Ef values. Doped Bi atoms provide a higher electron concentration, and Sb atoms offer higher carrier effective mass. Thus, the maximum σ value of the Mg2Si0.375Sn0.615Bi0.01 alloy is 1620 S/cm. The maximum S value of the Mg2Si0.365Sn0.625Sb0.01 alloy is –228 μV/K. Correspondingly, the highest PF value for this alloy is 4.49 mW/(m·K) at T = 800 K because of the dominant role of S values. Although its power factor is slightly lower, the Mg2Si0.375Sn0.615Sb0.01 alloy is expected to exhibit lower lattice thermal conductivity due to the lattice shrinkage caused by substituting Sb sites for Sn sites. The optimal doping concentration of the Bi-doped alloy is lower than that of the Sb-doped alloy. These results are expected to provide a significant reference for optimizing the experimental performance of Mg2(Si, Sn)-based alloys.
      通信作者: 李鑫, lixin005@xaau.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51904219)、陕西省自然科学基金(批准号: 2020JQ-906)和陕西高校青年创新团队资助的课题
      Corresponding author: Li Xin, lixin005@xaau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51904219), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-906), and the Youth Innovation Team of Shaanxi Universities, China.
    [1]

    Bahrami A, Schierning G, Nielsch K 2020 Adv. Energy Mater. 10 1904159Google Scholar

    [2]

    Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454Google Scholar

    [3]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [4]

    程立东, 刘瑞恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第8—13页

    Cheng L D, Liu R H, Shi X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp8–13 (in Chinese)

    [5]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [6]

    Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F, Chen X J 2019 Nat. Mater. 18 1321Google Scholar

    [7]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [8]

    黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程 2021 70 157401Google Scholar

    Huang Q S, Duan B, Chen G, Ye Z C, Li J, Li G D, Zhai P C 2021 Acta Phys. Sin. 70 157401Google Scholar

    [9]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [10]

    Kim M S, Lee W J, Cho K H, Ahn J P, Sung Y M 2016 ACS Nano 10 7197Google Scholar

    [11]

    Zhao Y W, Liu Y, Ma H Y, Deng S P, Wang H Y, Xiong R, Huang S 2021 Ceram. Int. 47 28268Google Scholar

    [12]

    Cahana M, Gelbstein Y 2020 Intermetallics 120 106767Google Scholar

    [13]

    Sankhla A, Kamila H, Kelm K, Mueller E, de Boor J 2020 Acta Mater. 199 85Google Scholar

    [14]

    Gao P, Lu X, Berkun I, Schmidt R D, Case E D, Hogan T P 2014 Appl. Phys. Lett. 105 202104Google Scholar

    [15]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z F 2016 Acta Mater. 103 633Google Scholar

    [16]

    Tan X J, Liu W, Shi H J, Tang X F, Uher C 2012 Phys. Rev. B 85 205212Google Scholar

    [17]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Electron. Mater. 47 1022Google Scholar

    [18]

    Li X, Li S M, Yang B, Feng S K, Zhong H 2018 J. Mater. Sci. Mater. Electron. 29 6245Google Scholar

    [19]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Alloy Compd. 739 705Google Scholar

    [20]

    Fan W H, Chen S P, Zeng B, Zhang Q, Meng Q S, Wang W X, Munir Z A 2017 ACS Appl. Mater. Inter 34 28635Google Scholar

    [21]

    Jiang G Y, He J, Zhu T J, Fu C G, Liu X H, Hu L P, Zhao X B 2014 Adv. Func. Mate. 24 1Google Scholar

    [22]

    Liu W, Tang X F, Li H, Sharp J, Zhou X Y, Uher C 2011 Chem. Mate. 23 5256Google Scholar

    [23]

    Du Z L, Zhu T J, Zhao X B 2012 Mater. Lett. 66 76Google Scholar

    [24]

    Khan A U, Vlachos N, Kyratsi T 2013 Scripta Mater. 69 606Google Scholar

    [25]

    Howlader S, Gupta S, Vasudevan R, Banerjee M K, Sachdev K 2020 Mater. Today Proc. 30 100Google Scholar

    [26]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [27]

    Imasato K, Kang S D, Ohno S, Snyder G J 2018 Mater. Horiz. 5 59Google Scholar

    [28]

    Mao J, Wu Y X, Song S W, Shuai J, Liu Z H, Pei Y Z, Ren Z F 2017 Mater. Today Phys. 3 1Google Scholar

    [29]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S 2013 Phys. Scripta 88 45302Google Scholar

    [30]

    Feng S K, Li S M, Fu H Z 2014 Comp. Mater. Sci. 82 45Google Scholar

    [31]

    Vanderbilt D 1990 Phys. Rev. B Condens. Matter. 41 7892Google Scholar

    [32]

    Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V, Sofo J O 2003 Phys. Rev. B 68 125210Google Scholar

    [33]

    Madsen G K H, Singh D J 2006 Comp. Phys. Commun. 175 67Google Scholar

    [34]

    Chou T L, Mustonen O, Tripathi T S, Karppinen M 2015 J. Phys. Condens. Matter. 28 35802Google Scholar

    [35]

    Chong X Y, Guan P W, Wang Y, Shang S L, Palma J P S, Drymiotis F, Ravi V A, Star K E, Fleurial J, Liu Z K 2018 ACS Appl. Energy Mater. 1 6600Google Scholar

    [36]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105Google Scholar

    [37]

    Zhang Q, Zheng Y, Su X L, Yin K, Tang X F, Uher C 2015 Scripta Mater. 96 1Google Scholar

    [38]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar

  • 图 1  Mg2(Si, Sn)晶体的晶胞、原胞和超晶胞结构示意图

    Fig. 1.  Conventional cell, primitive cell and supercell of Mg2(Si, Sn) crystal.

    图 2  Bi/Sb掺杂的Mg192Si36Sn60晶体的电荷密度分布图

    Fig. 2.  Electron density of Bi/Sb doped Mg192Si36Sn60 alloys.

    图 3  未掺杂 Mg2Si0.375Sn0.625合金单胞(a)和Sb/Bi原子分别取代Si/Sn位(b)—(e)的Mg2Si0.375Sn0.625合金超晶胞的能带结构图

    Fig. 3.  Band structures of undoped Mg2Si0.375Sn0.625 conventional cell (a) and the supercells with Sb/Bi doped at different Si/Sn sites (b)–(e).

    图 4  不同掺杂条件下Mg2Si0.375Sn0.625合金的DOS计算结果(a)和各成分合金中不同元素对DOS的贡献(b)—(f)

    Fig. 4.  Calculated results of total DOS (a) and the weighting of elements in total DOS (b)–(f) for the Mg2Si0.375Sn0.625 alloys under different doping conditions.

    图 5  快速凝固Mg2Si0.375Sn0.625合金微观组织图(a)以及Mg, Si和Sn元素分布的面扫描结果(b)—(d)

    Fig. 5.  Microstructure of rapid solidified Mg2Si0.375Sn0.625 crystal (a) and the elements mapping images of Mg, Si, and Sn (b)–(d).

    图 6  不同掺杂条件下快速凝固Mg2Si0.375Sn0.625合金的粉末XRD图(a)和(111), (220)衍射峰的局部放大图(b)

    Fig. 6.  Power XRD patterns of the rapid solidified Mg2Si0.375Sn0.625 crystals under different doping conditions (a) and partial enlarged peaks of (111) and (220) (b).

    图 7  不同掺杂条件下Mg2Si0.375Sn0.625合金Seebeck系数(a)和电导率(b)随温度的变化曲线; T = 800 K时Seebeck系数随载流子浓度的变化曲线(c)和框选部分的局部放大图(d)

    Fig. 7.  Temperature dependence of Seebeck coefficient (a) and electrical conductivity (b) of Mg2Si0.375Sn0.625 crystals under different doping conditions. Calculated Seebeck coefficient as a function of carrier concentration (c) and magnified view (d) of the outlined area at T = 800 K.

    图 8  不同s掺杂条件下Mg2Si0.375Sn0.625合金功率因子(a)、热导率(b)和ZT值(c)随温度的变化曲线

    Fig. 8.  Temperature dependence of power factor (a), thermal conductivity (b), and ZT (c) of Mg2Si0.375Sn0.625 crystals under different doping conditions.

    表 1  Bi/Sb掺杂Mg192Si36Sn60晶体晶格常数、键长度和Mulliken布居数的计算结果

    Table 1.  Calculated results of lattice constant, bond length and Mulliken population for Bi/Sb doped Mg192Si36Sn60 crystals.

    超晶胞结构晶格常数/Å键类型Mulliken
    布居数
    键长
    度/Å
    形成
    能/eV
    Mg192Si36Sn6018.436Mg—Sn0.262.846
    Mg—Si0.192.748
    Mg192Si36Sn59Sb18.422Mg—Sb0.102.896–1.102
    Mg—Sn0.332.814
    Mg—Si0.222.708
    Mg192Si36Sn59Bi18.442Mg—Bi0.222.963–0.674
    Mg—Sn0.272.849
    Mg—Si0.202.763
    Mg192Si35Sn60Sb18.438Mg—Sb0.142.935–1.337
    Mg—Sn0.302.831
    Mg—Si0.212.727
    Mg19Si35Sn60Bi18.440Mg—Bi0.172.989–0.945
    Mg—Sn0.202.855
    Mg—Si0.202.766
    下载: 导出CSV

    表 2  不同掺杂条件下Mg2Si0.375Sn0.625合金的理论成分和实验所得样品的EDS成分测试结果

    Table 2.  Nominal and measured results of elementary composition of Mg2Si0.375Sn0.625 alloys under different doping conditions

    理论成分元素含量/%实际成分
    MgSiSnSb/Bi
    Mg2Si0.375Sn0.62566.9112.5120.58Mg2.007Si0.375Sn0.618
    Mg2Si0.375Sn0.615Sb0.0166.8212.4320.360.39Mg2.004Si0.373Sn0.611Sb0.012
    Mg2Si0.375Sn0.615Bi0.0166.8812.4120.300.41Mg2.006Si0.372Sn0.609Bi0.013
    Mg2Si0.365Sn0.625Sb0.0166.9312.0120.740.32Mg2.008Si0.360Sn0.623Sb0.009
    Mg2Si0.365Sn0.625Bi0.0166.7712.0720.710.45Mg2.003Si0.362Sn0.621Bi0.014
    下载: 导出CSV
    Baidu
  • [1]

    Bahrami A, Schierning G, Nielsch K 2020 Adv. Energy Mater. 10 1904159Google Scholar

    [2]

    Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454Google Scholar

    [3]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [4]

    程立东, 刘瑞恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第8—13页

    Cheng L D, Liu R H, Shi X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp8–13 (in Chinese)

    [5]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [6]

    Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F, Chen X J 2019 Nat. Mater. 18 1321Google Scholar

    [7]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [8]

    黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程 2021 70 157401Google Scholar

    Huang Q S, Duan B, Chen G, Ye Z C, Li J, Li G D, Zhai P C 2021 Acta Phys. Sin. 70 157401Google Scholar

    [9]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [10]

    Kim M S, Lee W J, Cho K H, Ahn J P, Sung Y M 2016 ACS Nano 10 7197Google Scholar

    [11]

    Zhao Y W, Liu Y, Ma H Y, Deng S P, Wang H Y, Xiong R, Huang S 2021 Ceram. Int. 47 28268Google Scholar

    [12]

    Cahana M, Gelbstein Y 2020 Intermetallics 120 106767Google Scholar

    [13]

    Sankhla A, Kamila H, Kelm K, Mueller E, de Boor J 2020 Acta Mater. 199 85Google Scholar

    [14]

    Gao P, Lu X, Berkun I, Schmidt R D, Case E D, Hogan T P 2014 Appl. Phys. Lett. 105 202104Google Scholar

    [15]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z F 2016 Acta Mater. 103 633Google Scholar

    [16]

    Tan X J, Liu W, Shi H J, Tang X F, Uher C 2012 Phys. Rev. B 85 205212Google Scholar

    [17]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Electron. Mater. 47 1022Google Scholar

    [18]

    Li X, Li S M, Yang B, Feng S K, Zhong H 2018 J. Mater. Sci. Mater. Electron. 29 6245Google Scholar

    [19]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Alloy Compd. 739 705Google Scholar

    [20]

    Fan W H, Chen S P, Zeng B, Zhang Q, Meng Q S, Wang W X, Munir Z A 2017 ACS Appl. Mater. Inter 34 28635Google Scholar

    [21]

    Jiang G Y, He J, Zhu T J, Fu C G, Liu X H, Hu L P, Zhao X B 2014 Adv. Func. Mate. 24 1Google Scholar

    [22]

    Liu W, Tang X F, Li H, Sharp J, Zhou X Y, Uher C 2011 Chem. Mate. 23 5256Google Scholar

    [23]

    Du Z L, Zhu T J, Zhao X B 2012 Mater. Lett. 66 76Google Scholar

    [24]

    Khan A U, Vlachos N, Kyratsi T 2013 Scripta Mater. 69 606Google Scholar

    [25]

    Howlader S, Gupta S, Vasudevan R, Banerjee M K, Sachdev K 2020 Mater. Today Proc. 30 100Google Scholar

    [26]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [27]

    Imasato K, Kang S D, Ohno S, Snyder G J 2018 Mater. Horiz. 5 59Google Scholar

    [28]

    Mao J, Wu Y X, Song S W, Shuai J, Liu Z H, Pei Y Z, Ren Z F 2017 Mater. Today Phys. 3 1Google Scholar

    [29]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S 2013 Phys. Scripta 88 45302Google Scholar

    [30]

    Feng S K, Li S M, Fu H Z 2014 Comp. Mater. Sci. 82 45Google Scholar

    [31]

    Vanderbilt D 1990 Phys. Rev. B Condens. Matter. 41 7892Google Scholar

    [32]

    Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V, Sofo J O 2003 Phys. Rev. B 68 125210Google Scholar

    [33]

    Madsen G K H, Singh D J 2006 Comp. Phys. Commun. 175 67Google Scholar

    [34]

    Chou T L, Mustonen O, Tripathi T S, Karppinen M 2015 J. Phys. Condens. Matter. 28 35802Google Scholar

    [35]

    Chong X Y, Guan P W, Wang Y, Shang S L, Palma J P S, Drymiotis F, Ravi V A, Star K E, Fleurial J, Liu Z K 2018 ACS Appl. Energy Mater. 1 6600Google Scholar

    [36]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105Google Scholar

    [37]

    Zhang Q, Zheng Y, Su X L, Yin K, Tang X F, Uher C 2015 Scripta Mater. 96 1Google Scholar

    [38]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算.  , 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [4] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究.  , 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [8] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能.  , 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [9] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究.  , 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [10] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算.  , 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [11] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [12] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [14] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [15] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析.  , 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [16] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征.  , 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [17] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能.  , 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  3701
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2022-09-12
  • 上网日期:  2022-12-02
  • 刊出日期:  2022-12-24

/

返回文章
返回
Baidu
map