搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化铌纳米线光学特性

吴洋 陈奇 徐睿莹 葛睿 张彪 陶旭 涂学凑 贾小氢 张蜡宝 康琳 吴培亨

引用本文:
Citation:

氮化铌纳米线光学特性

吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨

Optical properties of niobium nitride nanowires

Wu Yang, Chen Qi, Xu Rui-Ying, Ge Rui, Zhang Biao, Tao Xu, Tu Xue-Cou, Jia Xiao-Qing, Zhang La-Bao, Kang Lin, Wu Pei-Heng
PDF
导出引用
  • 氮化铌(NbN)纳米线是超导纳米线单光子探测器(SNSPD)常用的光敏材料,其光学性质是影响SNSPD性能的关键因素.本文结合实验数据和仿真结果,系统研究了多种NbN超导纳米线探测器器件结构的光学特性,表征了以下四种器件结构下的反射光谱以及透射光谱:1)双面热氧化硅衬底背面对光结构;2)双面SiN硅衬底背面对光结构;3)硅衬底上以金层+SiN缓冲层为反射镜的正面对光结构;4)以分布式布拉格反射镜(DBR)为衬底的正面对光结构.并在上述四种器件结构基础上,生长了不同厚度的NbN薄膜,观察不同厚度NbN薄膜的吸收效率.经分析,发现在不同器件结构下的最佳NbN厚度与光吸收率的关系如下:双面热氧化硅衬底上的NbN层在1606 nm处最大吸收率为91.7%,其余结构在最佳NbN厚度条件下吸收率都能达到99%以上.其中双面SiN的硅衬底结构中最大吸收率为99.3%,mAu+SiN为99.8%,DBR为99.9%.最后,将DBR器件实测结果与仿真结果进行了差异性分析.这些结果对高效率SNSPD设计与研制具有指导意义.
    Niobium nitride (NbN) nanowires are commonly used as photosensitive materials for superconducting nanowire single-photon detectors (SNSPDs). Their optical properties are the key factors influencing the performance of SNSPD. According to the experimental data and simulation results, in this paper we systematically study the optical properties of various niobium nitride nanowire detector device structures, and characterize the reflection spectra and transmission spectra of the following four device structures:1) Backside optical devices with SiO2 as the antireflection layer, 2) backside optical devices with SiN as the antireflection layer, 3) front-facing optical devices with Au+SiN as a mirror, and 4) front-facing optical devices with distributed Bragg reflector (DBR) as a mirror. The NbN films with different thickness are grown on the basis of the four device structures, and the absorption efficiencies of the NbN films with different thickness are observed. The relationships between the optimal NbN thickness and the optical absorption rate for different device structures are found as follows:The maximum absorption rate of NbN on the SiO2 antireflection layer is 91.7% at 1606 nm, while the absorption rates of the remaining structures at the optimal thickness of NbN can reach 99% or more. The absorption rate of the SiN device, the Au+SiN device and the DBR device are 99.3%, 99.8% and 99.9%, respectively. The measured results and simulation structure of DBR device are analyzed. These results are of significance for guiding the design and development of high efficiency SNSPD.
    [1]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [2]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [3]

    Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867

    [4]

    Wu J, You L, Chen S, Li H, He Y, Lv C, Wang Z, Xie X 2017 Appl. Opt. 56 2195

    [5]

    Korneeva Y, Florya I, Semenov A, Korneev A, Goltsman G 2011 IEEE Trans. Appl. Supercond. 21 323

    [6]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129

    [7]

    Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K, Yamamoto Y 2007 Nat. Photon. 1 343

    [8]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535

    [9]

    Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848

    [10]

    Grein M E, Kerman A J, Dauler E A, Shatrovoy O, Molnar R J, Rosenberg D, Devoe C E, Murphy D V, Robinson B S, Boroson D M 2011 Design of a Ground-Based Optical Receiver for the Lunar Laser Communications Demonstration Santa Monica, CA, USA, May 11-13, 2011 p78

    [11]

    Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, Zhang L, Kang L, Chen J, Zhang X, Wu P 2015 Sci. Rep. 5 10441

    [12]

    Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J, Wu P 2017 Sci. Rep. 7 1

    [13]

    Qiu J, Xia H, Shangguan M, Dou X, Li M, Wang C, Shang X, Lin S, Liu J 2017 Opt. Lett. 42 4454

    [14]

    Shangguan M, Xia H, Wang C, Qiu J, Lin S, Dou X, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541

    [15]

    Li H, Zhang L, You L, Yang X, Zhang W, Liu X, Chen S, Wang Z, Xie X 2015 Opt. Express 23 17301

    [16]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750

    [17]

    Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527

    [18]

    Zhang L, Yan X, Jiang C, Zhang S, Chen Y, Chen J, Kang L, Wu P 2016 IEEE Photonics Technol. Lett. 28 2522

    [19]

    Zhang W J, You L X, Li H, Huang J, Lü C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314

    [20]

    Cristiano R, Parlato L, Nasti U, Ejrnaes M, Myoren H, Taino T, Sobolewski R, Pepe G P 2016 IEEE Trans. Appl. Supercond. 26 3

    [21]

    Akhlaghi M K, Schelew E, Young J F 2015 Nat. Commun. 6 8233

    [22]

    Wang Z, Kawakami A, Uzawa Y, Komiyama B, Wang Z, Kawakami A, Uzawa Y, Komiyama B 1996 J. Appl. Phys. 79 7837

  • [1]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [2]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210

    [3]

    Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867

    [4]

    Wu J, You L, Chen S, Li H, He Y, Lv C, Wang Z, Xie X 2017 Appl. Opt. 56 2195

    [5]

    Korneeva Y, Florya I, Semenov A, Korneev A, Goltsman G 2011 IEEE Trans. Appl. Supercond. 21 323

    [6]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129

    [7]

    Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K, Yamamoto Y 2007 Nat. Photon. 1 343

    [8]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535

    [9]

    Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848

    [10]

    Grein M E, Kerman A J, Dauler E A, Shatrovoy O, Molnar R J, Rosenberg D, Devoe C E, Murphy D V, Robinson B S, Boroson D M 2011 Design of a Ground-Based Optical Receiver for the Lunar Laser Communications Demonstration Santa Monica, CA, USA, May 11-13, 2011 p78

    [11]

    Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, Zhang L, Kang L, Chen J, Zhang X, Wu P 2015 Sci. Rep. 5 10441

    [12]

    Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J, Wu P 2017 Sci. Rep. 7 1

    [13]

    Qiu J, Xia H, Shangguan M, Dou X, Li M, Wang C, Shang X, Lin S, Liu J 2017 Opt. Lett. 42 4454

    [14]

    Shangguan M, Xia H, Wang C, Qiu J, Lin S, Dou X, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541

    [15]

    Li H, Zhang L, You L, Yang X, Zhang W, Liu X, Chen S, Wang Z, Xie X 2015 Opt. Express 23 17301

    [16]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750

    [17]

    Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527

    [18]

    Zhang L, Yan X, Jiang C, Zhang S, Chen Y, Chen J, Kang L, Wu P 2016 IEEE Photonics Technol. Lett. 28 2522

    [19]

    Zhang W J, You L X, Li H, Huang J, Lü C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314

    [20]

    Cristiano R, Parlato L, Nasti U, Ejrnaes M, Myoren H, Taino T, Sobolewski R, Pepe G P 2016 IEEE Trans. Appl. Supercond. 26 3

    [21]

    Akhlaghi M K, Schelew E, Young J F 2015 Nat. Commun. 6 8233

    [22]

    Wang Z, Kawakami A, Uzawa Y, Komiyama B, Wang Z, Kawakami A, Uzawa Y, Komiyama B 1996 J. Appl. Phys. 79 7837

  • [1] 赵宗阳, 李铭, 周涛. 石墨烯类超导体的单磁性杂质效应.  , 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [2] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [3] 奉熙林, 蒋坤, 胡江平. 钒基笼目超导体.  , 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [4] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性.  , 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [5] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [6] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理.  , 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [7] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化.  , 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [8] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究.  , 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [9] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟.  , 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [10] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究.  , 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [11] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究.  , 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [12] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪.  , 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [13] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解.  , 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [14] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质.  , 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [15] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源.  , 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [16] 王久敏, 陈坤基, 宋 捷, 余林蔚, 吴良才, 李 伟, 黄信凡. 氮化硅介质中双层纳米硅薄膜的两级电荷存储.  , 2006, 55(11): 6080-6084. doi: 10.7498/aps.55.6080
    [17] 张端明, 李 莉, 李智华, 关 丽, 侯思普, 谭新玉. 靶材吸收率变化与烧蚀过程熔融前靶材温度分布.  , 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [18] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声.  , 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究.  , 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率.  , 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
计量
  • 文章访问数:  6936
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-10-12
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map