搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高质量FeSe单晶薄膜的制备及相关性能表征

杨桦 冯中沛 林泽丰 胡卫 秦明阳 朱北沂 袁洁 金魁

引用本文:
Citation:

高质量FeSe单晶薄膜的制备及相关性能表征

杨桦, 冯中沛, 林泽丰, 胡卫, 秦明阳, 朱北沂, 袁洁, 金魁

Preparation and characterization of high-quality FeSe single crystal thin films

Yang Hua, Feng Zhong-Pei, Lin Ze-Feng, Hu Wei, Qin Ming-Yang, Zhu Bei-Yi, Yuan Jie, Jin Kui
PDF
导出引用
  • 在铁基超导体中,FeSe具有最简单的晶体结构和化学组成,而且其超导转变温度具有较大的调控空间,因此适合作为超导机理研究和应用的载体.高质量样品的研制是物性研究和器件应用的前提,本文系统地研究了利用激光脉冲沉积技术制备FeSe薄膜的工艺条件,在多种衬底上成功地制备出高质量的-FeSe薄膜,并首次实现了超导临界转变温度从小于2 K到14 K的连续调控,这为FeSe超导机理研究提供了样品支持.为探究FeSe薄膜超导电性变化的起因,从-FeSe超导电性与晶格常数c正相关出发,基于简单的费米面填充假设,第一性原理计算可以很好地解释晶格常数c的变化规律,但该假设并不能完全符合角分辨光电子能谱实验给出的电子结构演变过程.因此-FeSe薄膜的超导电性、晶格结构和电子结构三者之间的关系还有待澄清,该问题的解决将为FeSe超导机理研究提供重要的线索,而上述系列高质量的-FeSe薄膜样品恰好能为该问题的研究提供理想的载体.本文根据实验和已有的相关研究结果,详细介绍了FeSe薄膜的脉冲激光沉积制备及其优化,以期为后续的薄膜研究应用提供参考.
    Of all iron-based superconductors, FeSe possesses the simplest structure whereas its superconducting critical temperature can be remarkably enhanced. Compared with bulk sample fabrication, the film preparation process is very precise and controllable. Although FeSe monolayer films exhibit a high Tc, they are unstable in air, and ex-situ measurements are very difficult. Therefore, the stable films with~100 nm in thickness can serve as good candidates to explore the mechanisms of iron-based superconductors. There is no doubt that the fabrication of high-quality FeSe thin films is of significance. The pulsed laser deposition (PLD) technique has more advantages in the growth of FeSe thick films than any other film fabrication technology, because of its high efficiency and wide adaptability. In this work, we systematically optimize the growth conditions of FeSe thin film fabricated by PLD. The main results are as follows. 1) The optimal growth temperature is 350℃, where the film has the best crystallinity and the highest Tc. 2) High-quality -FeSe epitaxial thin films with the thickness ranging from 10 to 320 nm have been successfully prepared on twelve types of substrates:CaF2, LiF, SrTiO3, MgO, BaF2, TiO2, LaAlO3, MgF2, Nb-SrTiO3, LSAT, LaSr(AlO4) and MgAl2O4. The Tc for the films on CaF2 with the same thickness of 160 nm can be tuned from 2 K to 14 K. 3) The Tc of the FeSe thick films may be precisely tuned by the Fe/Se ratio which is affected by the proportion of the nominal components of the target, the laser energy density and the ablation off-stoichiometry of target. 4) The surface morphology measurement, cleavability and transferability experiments of films are performed. In addition, it is worth of mentioning that there is a significant positive correlation between Tc, lattice constant c and residual resistivity ratio (RRR), as evidenced through a detailed statistical analysis of the data from more than 1500 samples. Since c and RRR are usually associated with the vacancies or defects, we conclude that the superconductivity of -FeSe thin films is closely related to the ratio of Fe to Se. Moreover, the first principle simulation shows that 0.5% increase of Fe content does lead to a change of 0.05 of c. However, according to the angle-resolved photoelectron spectroscopy experiment, there is no obvious change near the point in the hole energy band, but the energy band changes significantly at the M point. This variation of electronic structures cannot be explained by electron filling which lifts up the Fermi energy. Therefore, the specific relationship among the superconductivity, lattice structure and electronic structure of FeSe thin films remains to be clarified. Such a series of high-quality -FeSe films offers a chance to further explore the nature of FeSe-based superconductors.
      通信作者: 金魁, kuijin@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB921000,2016YFA0300301,2017YFA0303003)、国家自然科学基金(批准号:11474338,11674374)、北京市科技计划课题(批准号:Z161100002116011,D161100002416003,D161100002416001)、中国科学院前沿重点项目(批准号:QYZDB-SSW-SLH008,QYZDY-SSW-SLH001)、中国科学院B类先导专项(批准号:XDB07020100)、脉冲强磁场实验装置开放课题(批准号:PHMFF2015008)和中国科学院B类先导科技专项培育项目(批准号:XDPB01)资助的课题.
      Corresponding author: Jin Kui, kuijin@iphy.ac.cn
    • Funds: Project supported by the National Key Basic Research Program of China (Grants Nos. 2015CB921000, 2016YFA0300301, 2017YFA0303003), the National Natural Science Foundation of China (Grants Nos. 11474338, 11674374), the Beijing Municipal Science and Technology Project, China (Grant Nos. Z161100002116011, D161100002416003, D161100002416001), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grants Nos. QYZDB-SSW-SLH008, QYZDY-SSW-SLH001), The Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), the Open Research Foundation of Wuhan National High Magnetic Field Center, China (Grant No. PHMFF2015008), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB01).
    [1]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [2]

    Paglione J, Greene R L 2010 Nature Phys. 6 645

    [3]

    Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nature Mater. 15 159

    [4]

    Yuan D, Yuan J, Huang Y, Ni S, Feng Z, Zhou H, Mao Y, Jin K, Zhang G, Dong X, Zhou F, Zhao Z 2016 Phys. Rev. B 94 060506

    [5]

    Imai Y, Sawada Y, Nabeshima F, Asami D, Kawai M, Maeda A 2017 Sci. Rep. 7 46653

    [6]

    Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139

    [7]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nature Mater. 8 630

    [8]

    Seo J J, Kim B Y, Kim B S, Jeong J K, Ok J M, Kim J S, Denlinger J D, Mo S K, Kim C, Kim Y K 2016 Nature Commun. 7 11116

    [9]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [10]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775

    [11]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [12]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [13]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nature Commun. 5 5044

    [14]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285

    [15]

    McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P, Cava R J 2009 Phys. Rev. B 79 014522

    [16]

    Bhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T, Meingast C 2013 Phys. Rev. B 87 180505

    [17]

    Koz C, Schmidt M, Borrmann H, Burkhardt U, R ler S, Carrillo-Cabrera W, Schnelle W, Schwarz U, Grin Y 2014 Zeitschrift fr Anorganische und Allgemeine Chemie 640 1600

    [18]

    Karlsson S, Strobel P, Sulpice A, Marcenat C, Legendre M, Gay F, Pairis S, Leynaud O, Toulemonde P 2015 Supercond. Sci. Tech. 28 105009

    [19]

    Bhmer A E, Taufour V, Straszheim W E, Wolf T, Canfield P C 2016 Phys. Rev. B 94 024526

    [20]

    Agatsuma S, Yamagishi T, Takeda S, Naito M 2010 Physica C: Superconductivity 470 1468

    [21]

    Han Y, Li W Y, Cao L X, Zhang S, Xu B, Zhao B R 2009 Journal of Physics. Condensed Matter: an Institute of Physics Journal 21 235702

    [22]

    Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M, Wells B O 2009 Appl. Phys. Lett. 94 242505

    [23]

    Chen T K, Luo J Y, Ke C T, Chang H H, Huang T W, Yeh K W, Chang C C, Hsu P C, Wu C T, Wang M J, Wu M K 2010 Thin Solid Films 519 1540

    [24]

    Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C: Superconductivity 470 1977

    [25]

    Maeda A, Nabeshima F, Takahashi H, Okada T, Imai Y, Tsukada I, Hanawa M, Komiya S, Ichinose A 2014 Appl. Sur. Sci. 312 43

    [26]

    Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2015 Nature Phys. 12 42

    [27]

    Schneider R, Zaitsev A G, Fuchs D, v Lhneysen H 2012 Phys. Rev. Lett. 108 257003

    [28]

    Qiu W, Ma Z, Patel D, Sang L, Cai C, Shahriar Al Hossain M, Cheng Z, Wang X, Dou S X 2017 ACS Appl. Mater. Interfaces 9 37446

    [29]

    Wang M J, Luo J Y, Huang T W, Chang H H, Chen T K, Hsu F C, Wu C T, Wu P M, Chang A M, Wu M K 2009 Phys. Rev. Lett. 103 117002

    [30]

    Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, Perng T P 2009 Physica C: Superconductivity 469 340

    [31]

    Tsukada A, Luna K E, Hammond R H, Beasley M R, Zhao J F, Risbud S H 2011 Applied Physics A 104 311

    [32]

    Schneider R, Zaitsev A G, Fuchs D, v. Lhneysen H 2015 The European Physical Journal B 88 14

    [33]

    Nabeshima F, Imai Y, Hanawa M, Tsukada I, Maeda A 2013 Appl. Phys. Lett. 103 172602

    [34]

    Imai Y, Sawada Y, Nabeshima F, Maeda A 2015 Proc. Natl. Acad. Sci. USA 112 1937

    [35]

    Qiu W, Ma Z, Liu Y, Wang X, Dou S X 2015 arXiv 1512.00352

    [36]

    Imai Y, Sawada Y, Asami D, Nabeshima F, Maeda A 2016 Physica C: Superconductivity and its Applications 530 24

    [37]

    Li L, Yang Z R, Sun Y P, Zhang J Y, Shen D Z, Zhang Y H 2011 Supercond. Sci. Tech. 24 015010

    [38]

    Demura S, Ozaki T, Okazaki H, Mizuguchi Y, Kawasaki Y, Deguchi K, Watanabe T, Hara H, Yamaguchi T, Takeya H, Takano Y 2012 Journal of the Physical Society of Japan 81 043702

    [39]

    Demura S, Okazaki H, Ozaki T, Hara H, Kawasaki Y, Deguchi K, Watanabe T, Denholme S J, Mizuguchi Y, Yamaguchi T, Takeya H, Takano Y 2013 Solid State Communications 154 40

    [40]

    Tkachenko O, Morawski A, Zaleski A J, Przyslupski P, Dietl T, Diduszko R, Presz A, Werner-Malento K 2009 Journal of Superconductivity and Novel Magnetism 22 599

    [41]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X, Xu Q K 2011 Science 332 1410

    [42]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Ma X C, Xue Q K 2011 Phys. Rev. B 84 020503

    [43]

    Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X, Jin K 2018 Sci. Rep. 8 4039

    [44]

    Springer-Materials https://materials.springer.com/isp/ phase-diagram/docs/c_0901080[2018-5-1]

    [45]

    Feng Z, Yuan J, Li J, Wu X, Hu W, Shen B, Qin M, Zhao L, Zhu B, Stanev V, Liu M, Zhang G, Dong X, Zhou F, Zhou X, Hu J, Takeuchi I, Zhao Z, Jin K 2018 arXiv 1807.01273

    [46]

    Tsukada I, Ichinose A, Nabeshima F, Imai Y, Maeda A 2016 AIP Advances 6 095314

    [47]

    Ohnishi T, Lippmaa M, Yamamoto T, Meguro S, Koinuma H 2005 Appl. Phys. Lett. 87 241919

    [48]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001

    [49]

    Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Beard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Lohneysen H, Matsuda Y, Coldea A I, Shibauchi T 2015 Phys. Rev. Lett. 115 027006

    [50]

    Shen B, Feng Z P, Huang J W, Hu Y, Gao Q, Li C, Xu Y, Liu G D, Yu L, Zhao L, Jin K, Zhou X J 2017 Chin. Phys. B 26 077402

  • [1]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [2]

    Paglione J, Greene R L 2010 Nature Phys. 6 645

    [3]

    Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nature Mater. 15 159

    [4]

    Yuan D, Yuan J, Huang Y, Ni S, Feng Z, Zhou H, Mao Y, Jin K, Zhang G, Dong X, Zhou F, Zhao Z 2016 Phys. Rev. B 94 060506

    [5]

    Imai Y, Sawada Y, Nabeshima F, Asami D, Kawai M, Maeda A 2017 Sci. Rep. 7 46653

    [6]

    Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139

    [7]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nature Mater. 8 630

    [8]

    Seo J J, Kim B Y, Kim B S, Jeong J K, Ok J M, Kim J S, Denlinger J D, Mo S K, Kim C, Kim Y K 2016 Nature Commun. 7 11116

    [9]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [10]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775

    [11]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [12]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [13]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nature Commun. 5 5044

    [14]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285

    [15]

    McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P, Cava R J 2009 Phys. Rev. B 79 014522

    [16]

    Bhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T, Meingast C 2013 Phys. Rev. B 87 180505

    [17]

    Koz C, Schmidt M, Borrmann H, Burkhardt U, R ler S, Carrillo-Cabrera W, Schnelle W, Schwarz U, Grin Y 2014 Zeitschrift fr Anorganische und Allgemeine Chemie 640 1600

    [18]

    Karlsson S, Strobel P, Sulpice A, Marcenat C, Legendre M, Gay F, Pairis S, Leynaud O, Toulemonde P 2015 Supercond. Sci. Tech. 28 105009

    [19]

    Bhmer A E, Taufour V, Straszheim W E, Wolf T, Canfield P C 2016 Phys. Rev. B 94 024526

    [20]

    Agatsuma S, Yamagishi T, Takeda S, Naito M 2010 Physica C: Superconductivity 470 1468

    [21]

    Han Y, Li W Y, Cao L X, Zhang S, Xu B, Zhao B R 2009 Journal of Physics. Condensed Matter: an Institute of Physics Journal 21 235702

    [22]

    Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M, Wells B O 2009 Appl. Phys. Lett. 94 242505

    [23]

    Chen T K, Luo J Y, Ke C T, Chang H H, Huang T W, Yeh K W, Chang C C, Hsu P C, Wu C T, Wang M J, Wu M K 2010 Thin Solid Films 519 1540

    [24]

    Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C: Superconductivity 470 1977

    [25]

    Maeda A, Nabeshima F, Takahashi H, Okada T, Imai Y, Tsukada I, Hanawa M, Komiya S, Ichinose A 2014 Appl. Sur. Sci. 312 43

    [26]

    Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2015 Nature Phys. 12 42

    [27]

    Schneider R, Zaitsev A G, Fuchs D, v Lhneysen H 2012 Phys. Rev. Lett. 108 257003

    [28]

    Qiu W, Ma Z, Patel D, Sang L, Cai C, Shahriar Al Hossain M, Cheng Z, Wang X, Dou S X 2017 ACS Appl. Mater. Interfaces 9 37446

    [29]

    Wang M J, Luo J Y, Huang T W, Chang H H, Chen T K, Hsu F C, Wu C T, Wu P M, Chang A M, Wu M K 2009 Phys. Rev. Lett. 103 117002

    [30]

    Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, Perng T P 2009 Physica C: Superconductivity 469 340

    [31]

    Tsukada A, Luna K E, Hammond R H, Beasley M R, Zhao J F, Risbud S H 2011 Applied Physics A 104 311

    [32]

    Schneider R, Zaitsev A G, Fuchs D, v. Lhneysen H 2015 The European Physical Journal B 88 14

    [33]

    Nabeshima F, Imai Y, Hanawa M, Tsukada I, Maeda A 2013 Appl. Phys. Lett. 103 172602

    [34]

    Imai Y, Sawada Y, Nabeshima F, Maeda A 2015 Proc. Natl. Acad. Sci. USA 112 1937

    [35]

    Qiu W, Ma Z, Liu Y, Wang X, Dou S X 2015 arXiv 1512.00352

    [36]

    Imai Y, Sawada Y, Asami D, Nabeshima F, Maeda A 2016 Physica C: Superconductivity and its Applications 530 24

    [37]

    Li L, Yang Z R, Sun Y P, Zhang J Y, Shen D Z, Zhang Y H 2011 Supercond. Sci. Tech. 24 015010

    [38]

    Demura S, Ozaki T, Okazaki H, Mizuguchi Y, Kawasaki Y, Deguchi K, Watanabe T, Hara H, Yamaguchi T, Takeya H, Takano Y 2012 Journal of the Physical Society of Japan 81 043702

    [39]

    Demura S, Okazaki H, Ozaki T, Hara H, Kawasaki Y, Deguchi K, Watanabe T, Denholme S J, Mizuguchi Y, Yamaguchi T, Takeya H, Takano Y 2013 Solid State Communications 154 40

    [40]

    Tkachenko O, Morawski A, Zaleski A J, Przyslupski P, Dietl T, Diduszko R, Presz A, Werner-Malento K 2009 Journal of Superconductivity and Novel Magnetism 22 599

    [41]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X, Xu Q K 2011 Science 332 1410

    [42]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Ma X C, Xue Q K 2011 Phys. Rev. B 84 020503

    [43]

    Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X, Jin K 2018 Sci. Rep. 8 4039

    [44]

    Springer-Materials https://materials.springer.com/isp/ phase-diagram/docs/c_0901080[2018-5-1]

    [45]

    Feng Z, Yuan J, Li J, Wu X, Hu W, Shen B, Qin M, Zhao L, Zhu B, Stanev V, Liu M, Zhang G, Dong X, Zhou F, Zhou X, Hu J, Takeuchi I, Zhao Z, Jin K 2018 arXiv 1807.01273

    [46]

    Tsukada I, Ichinose A, Nabeshima F, Imai Y, Maeda A 2016 AIP Advances 6 095314

    [47]

    Ohnishi T, Lippmaa M, Yamamoto T, Meguro S, Koinuma H 2005 Appl. Phys. Lett. 87 241919

    [48]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001

    [49]

    Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Beard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Lohneysen H, Matsuda Y, Coldea A I, Shibauchi T 2015 Phys. Rev. Lett. 115 027006

    [50]

    Shen B, Feng Z P, Huang J W, Hu Y, Gao Q, Li C, Xu Y, Liu G D, Yu L, Zhao L, Jin K, Zhou X J 2017 Chin. Phys. B 26 077402

  • [1] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能.  , 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [2] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为.  , 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [3] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [4] 陆益敏, 黄国俊, 程勇, 王赛, 刘旭, 韦尚方, 米朝伟. 脉冲激光沉积无氢钨掺杂类金刚石膜的摩擦与机械性能.  , 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [5] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器.  , 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [6] 吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-José Casanove, Christophe Gatel, 吴卫东. 纳米FePt颗粒:MgO多层复合薄膜的外延生长、微观结构与磁性研究.  , 2014, 63(16): 166801. doi: 10.7498/aps.63.166801
    [7] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿).  , 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [8] 徐韵, 李云鹏, 金璐, 马向阳, 杨德仁. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射.  , 2013, 62(8): 084207. doi: 10.7498/aps.62.084207
    [9] 王淑芳, 陈珊珊, 陈景春, 闫国英, 乔小齐, 刘富强, 王江龙, 丁学成, 傅广生. 脉冲激光沉积温度及氧压对Bi2Sr2Co2Oy热电薄膜晶体结构与电输运性能的影响.  , 2012, 61(6): 066804. doi: 10.7498/aps.61.066804
    [10] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响.  , 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [11] 尚杰, 张辉, 曹明刚, 张鹏翔. 氧压对Ba0.6Sr0.4TiO3薄膜晶格常数的影响及BaTiO3/Ba0.6Sr0.4TiO3超晶格的制备.  , 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [12] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征.  , 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [13] 储海峰, 李洁, 李绍, 黎松林, 王佳, 高艳丽, 邓辉, 王宁, 张玉, 吴玉林, 郑东宁. Sr2CoO4-δ薄膜中的自旋玻璃态的磁性质研究.  , 2010, 59(9): 6585-6592. doi: 10.7498/aps.59.6585
    [14] 刘 婷, 谈松林, 张 辉, 秦 毅, 张鹏翔. 氧压对SrTiO3和SrNb0.2Ti0.8O3薄膜晶格参数的影响及激光感生热电电压效应.  , 2008, 57(7): 4424-4427. doi: 10.7498/aps.57.4424
    [15] 李少珍, 李美亚, 徐文广, 魏建华, 赵兴中. Si基铁电Bi3.15Nd0.85Ti3O12多层薄膜的一致取向生长和性能的研究.  , 2006, 55(3): 1472-1478. doi: 10.7498/aps.55.1472
    [16] 段 苹, 陈正豪, 戴守愚, 周岳亮, 吕惠宾. La1-xPrxMnO3(x=0.1,0.2)薄膜庞磁电阻性质的研究.  , 2006, 55(3): 1441-1446. doi: 10.7498/aps.55.1441
    [17] 刘 震, 王淑芳, 赵嵩卿, 周岳亮. 利用脉冲激光沉积技术在双轴织构的Ni基带上外延CeO2薄膜.  , 2005, 54(12): 5820-5823. doi: 10.7498/aps.54.5820
    [18] 王伟田, 杨 光, 关东仪, 吴卫东, 陈正豪. 金属纳米团簇复合薄膜Au/BaTiO3与Fe/BaTiO3的PLD制备及其光吸收特征.  , 2004, 53(3): 932-935. doi: 10.7498/aps.53.932
    [19] 王淑芳, 朱亚彬, 张芹, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 制备温度对MgB-2薄膜超导电性的影响.  , 2002, 51(12): 2842-2845. doi: 10.7498/aps.51.2842
    [20] 傅广生, 于威, 王淑芳, 李晓苇, 张连水, 韩理. 辉光放电等离子体辅助XeCl准分子激光溅射沉积碳氮薄膜.  , 2001, 50(11): 2263-2268. doi: 10.7498/aps.50.2263
计量
  • 文章访问数:  7173
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-11
  • 修回日期:  2018-05-21
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map