-
设计了一种六角密排的二维环形纳米腔阵列结构, 利用时域有限差分算法对该结构的光学特性进行了探究. 仿真结果表明, 在线性偏振光入射时, 环形腔内可以形成多重圆柱形表面等离激元谐振, 谐振波长的个数和大小与环形腔的结构参数相关. 根据透、反射光谱, 电场矢量的模式分布及截面电荷密度的分布, 谐振波长处形成圆柱形表面等离激元, 谐振波长处入射光能量大部分在环形腔内损耗, 此时反射率为极小值, 环形腔内的电场增强效应为极大值(光强增强可达1065倍). 谐振波长与环形腔的结构参数(狭缝内径、狭缝外径、膜厚、环境介质折射率、金属的材质)相关, 通过调节结构参数, 谐振波长在3502000 nm范围内可调. 通过对比相同结构参数的单个环形腔和环形腔阵列的仿真结果, 周期排布对环形腔内的圆柱形表面等离激元吸收峰位置影响不明显. 该结构反射光谱对入射光电矢量偏振方向不敏感. 谐振波长的可调控性对于表面拉曼增强和表面等离激元共振传感器的设计与优化具有指导性意义, 且应用于折射率传感器时灵敏度可达1850 nm/RIU.
-
关键词:
- 圆柱形表面等离激元谐振 /
- 时域有限差分法 /
- 环形腔 /
- 二维周期性结构
Optical properties of two-dimensional periodic annular cavity arrays in hexagonal packing are investigated by finite difference time domain simulation method in this paper. According to simulated reflectance/transmission spectra, electric field distribution and charge distribution, we confirm that multiple cylindrical surface plasmon resonances, which result in reflectance dips, can be excited in annular cavities by linearly polarized light. Mechanism of the cylindrical surface plasmons is investigated. A coaxial waveguide mode TE11 is excited in the annular cavities and a Fabry-Perot resonance is fulfilled along the depth direction of the annular cavities at the resonance wavelengths. While the number of reflectance dips and wavelengths of these dips in reflectance spectra are dependent on the geometric sizes of the annular cavities, the periodicity and polarization of incident light do not affect their reflectance spectra dramatically. Incident light beams with resonant wavelengths are localized in annular cavities with large electric field increasing and dissipate gradually due to metal loss. Reflectance dips can be tuned from 350 to 2000 nm by adjusting geometric size parameters of the annular cavities, such as outer and inner radii of the annular gaps, gap sizes and metal film thickness values. Reflectance dips shift toward longer wavelength with increasing inner and outer radii of the annular gaps, metal film thickness and with reducing the gap distance. In addition, infiltrate liquids in the annular gaps will result in a shift of the resonance wavelengths, which makes the annular cavities good refractive index sensors. A refractive index sensitivity up to 1850 nm/RIU is demonstrated. The refractive index sensitivities of annular cavities can also be tuned by their geometric sizes. Annular cavities with large electric field enhancement and tunable cylindrical surface plasmons can be used as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers and optical trappers.-
Keywords:
- cylindrical surface plasmons /
- finite difference time domain /
- ring cavity /
- two-dimensional periodical structure
[1] Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotech. 8 784
[2] Hao F, Nordlander P 2007 Phys. Rev. B 76 245417
[3] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
[4] Nordlander P, Prodan E 2004 Nano. Lett. 4 899
[5] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442
[6] Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111
[7] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B: Chem. 54 3
[8] Subramania G, Foteinopoulou S, Brener I 2011 Phys. Rev. Lett. 107 163902
[9] Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese) [罗松, 付统, 张中月 2013 62 147303]
[10] Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]
[11] Zhu J, Ren Y J 2013 Appl. Surf. Sci. 285 649
[12] Heo C J, Kim S H, Jang S G, Lee S Y, Yang S M 2013 Adv. Mater. 21 1726
[13] Huang F M, Wilding D, Speed J D, Russell A E, Bartlett P N, Baumberg J J 2011 Nano. Lett. 11 1221
[14] Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889
[15] Ren W Z, Dai Y M, Cai H B, Ding H Y, Pan N, Wang X P 2013 Opt. Express 21 10251
[16] Chris K J 2002 Neuroscience 22 639
[17] Zhang X M, Xiao J J, Zhang Q 2014 Chin. Phys. B 23 017302
[18] Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 62 178502]
[19] Heshmat B, Li D 2011 Opt. Express 19 5912
[20] Ge D B, Yan Y B 2002 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法 (第3版) (西安:西安电子科技大学出版社) 第25页]
[21] Ni H B, Wang M, Shen T Y, Zhou J 2015 ACS Nano 9 1913
[22] Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (1st Ed.) (Jilin: Jilin University Press) (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(第1版) (吉林:吉林电子科技大学出版社) 第305页]
[23] Haftel M I, Schlockermann C, Blumberg G 2006 Phys. Rev. B 74 235405
-
[1] Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotech. 8 784
[2] Hao F, Nordlander P 2007 Phys. Rev. B 76 245417
[3] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
[4] Nordlander P, Prodan E 2004 Nano. Lett. 4 899
[5] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442
[6] Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111
[7] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B: Chem. 54 3
[8] Subramania G, Foteinopoulou S, Brener I 2011 Phys. Rev. Lett. 107 163902
[9] Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese) [罗松, 付统, 张中月 2013 62 147303]
[10] Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]
[11] Zhu J, Ren Y J 2013 Appl. Surf. Sci. 285 649
[12] Heo C J, Kim S H, Jang S G, Lee S Y, Yang S M 2013 Adv. Mater. 21 1726
[13] Huang F M, Wilding D, Speed J D, Russell A E, Bartlett P N, Baumberg J J 2011 Nano. Lett. 11 1221
[14] Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889
[15] Ren W Z, Dai Y M, Cai H B, Ding H Y, Pan N, Wang X P 2013 Opt. Express 21 10251
[16] Chris K J 2002 Neuroscience 22 639
[17] Zhang X M, Xiao J J, Zhang Q 2014 Chin. Phys. B 23 017302
[18] Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 62 178502]
[19] Heshmat B, Li D 2011 Opt. Express 19 5912
[20] Ge D B, Yan Y B 2002 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法 (第3版) (西安:西安电子科技大学出版社) 第25页]
[21] Ni H B, Wang M, Shen T Y, Zhou J 2015 ACS Nano 9 1913
[22] Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (1st Ed.) (Jilin: Jilin University Press) (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(第1版) (吉林:吉林电子科技大学出版社) 第305页]
[23] Haftel M I, Schlockermann C, Blumberg G 2006 Phys. Rev. B 74 235405
计量
- 文章访问数: 7804
- PDF下载量: 163
- 被引次数: 0