搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形狭缝腔阵列光学特性的研究

周静 王鸣 倪海彬 马鑫

引用本文:
Citation:

环形狭缝腔阵列光学特性的研究

周静, 王鸣, 倪海彬, 马鑫

Finite difference time domain simulation of optical properties of annular cavity arrays

Zhou Jing, Wang Ming, Ni Hai-Bin, Ma Xin
PDF
导出引用
  • 设计了一种六角密排的二维环形纳米腔阵列结构, 利用时域有限差分算法对该结构的光学特性进行了探究. 仿真结果表明, 在线性偏振光入射时, 环形腔内可以形成多重圆柱形表面等离激元谐振, 谐振波长的个数和大小与环形腔的结构参数相关. 根据透、反射光谱, 电场矢量的模式分布及截面电荷密度的分布, 谐振波长处形成圆柱形表面等离激元, 谐振波长处入射光能量大部分在环形腔内损耗, 此时反射率为极小值, 环形腔内的电场增强效应为极大值(光强增强可达1065倍). 谐振波长与环形腔的结构参数(狭缝内径、狭缝外径、膜厚、环境介质折射率、金属的材质)相关, 通过调节结构参数, 谐振波长在3502000 nm范围内可调. 通过对比相同结构参数的单个环形腔和环形腔阵列的仿真结果, 周期排布对环形腔内的圆柱形表面等离激元吸收峰位置影响不明显. 该结构反射光谱对入射光电矢量偏振方向不敏感. 谐振波长的可调控性对于表面拉曼增强和表面等离激元共振传感器的设计与优化具有指导性意义, 且应用于折射率传感器时灵敏度可达1850 nm/RIU.
    Optical properties of two-dimensional periodic annular cavity arrays in hexagonal packing are investigated by finite difference time domain simulation method in this paper. According to simulated reflectance/transmission spectra, electric field distribution and charge distribution, we confirm that multiple cylindrical surface plasmon resonances, which result in reflectance dips, can be excited in annular cavities by linearly polarized light. Mechanism of the cylindrical surface plasmons is investigated. A coaxial waveguide mode TE11 is excited in the annular cavities and a Fabry-Perot resonance is fulfilled along the depth direction of the annular cavities at the resonance wavelengths. While the number of reflectance dips and wavelengths of these dips in reflectance spectra are dependent on the geometric sizes of the annular cavities, the periodicity and polarization of incident light do not affect their reflectance spectra dramatically. Incident light beams with resonant wavelengths are localized in annular cavities with large electric field increasing and dissipate gradually due to metal loss. Reflectance dips can be tuned from 350 to 2000 nm by adjusting geometric size parameters of the annular cavities, such as outer and inner radii of the annular gaps, gap sizes and metal film thickness values. Reflectance dips shift toward longer wavelength with increasing inner and outer radii of the annular gaps, metal film thickness and with reducing the gap distance. In addition, infiltrate liquids in the annular gaps will result in a shift of the resonance wavelengths, which makes the annular cavities good refractive index sensors. A refractive index sensitivity up to 1850 nm/RIU is demonstrated. The refractive index sensitivities of annular cavities can also be tuned by their geometric sizes. Annular cavities with large electric field enhancement and tunable cylindrical surface plasmons can be used as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers and optical trappers.
      通信作者: 王鸣, wangming@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178044)、江苏省高校研究生培养创新工程(批准号: KYLX_0723)和江苏省科技支撑计划(批准号: BE2008138)资助的课题.
      Corresponding author: Wang Ming, wangming@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the University Postgraduate Research and Innovation Project of Jiangsu Province, China (Grant No. KYLX_0723), and the Jiangsu Province Prospective Joint Research Project, China (Grant No. BE2008138).
    [1]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotech. 8 784

    [2]

    Hao F, Nordlander P 2007 Phys. Rev. B 76 245417

    [3]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [4]

    Nordlander P, Prodan E 2004 Nano. Lett. 4 899

    [5]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442

    [6]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [7]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B: Chem. 54 3

    [8]

    Subramania G, Foteinopoulou S, Brener I 2011 Phys. Rev. Lett. 107 163902

    [9]

    Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese) [罗松, 付统, 张中月 2013 62 147303]

    [10]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]

    [11]

    Zhu J, Ren Y J 2013 Appl. Surf. Sci. 285 649

    [12]

    Heo C J, Kim S H, Jang S G, Lee S Y, Yang S M 2013 Adv. Mater. 21 1726

    [13]

    Huang F M, Wilding D, Speed J D, Russell A E, Bartlett P N, Baumberg J J 2011 Nano. Lett. 11 1221

    [14]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [15]

    Ren W Z, Dai Y M, Cai H B, Ding H Y, Pan N, Wang X P 2013 Opt. Express 21 10251

    [16]

    Chris K J 2002 Neuroscience 22 639

    [17]

    Zhang X M, Xiao J J, Zhang Q 2014 Chin. Phys. B 23 017302

    [18]

    Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 62 178502]

    [19]

    Heshmat B, Li D 2011 Opt. Express 19 5912

    [20]

    Ge D B, Yan Y B 2002 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法 (第3版) (西安:西安电子科技大学出版社) 第25页]

    [21]

    Ni H B, Wang M, Shen T Y, Zhou J 2015 ACS Nano 9 1913

    [22]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (1st Ed.) (Jilin: Jilin University Press) (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(第1版) (吉林:吉林电子科技大学出版社) 第305页]

    [23]

    Haftel M I, Schlockermann C, Blumberg G 2006 Phys. Rev. B 74 235405

  • [1]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotech. 8 784

    [2]

    Hao F, Nordlander P 2007 Phys. Rev. B 76 245417

    [3]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419

    [4]

    Nordlander P, Prodan E 2004 Nano. Lett. 4 899

    [5]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P 2008 Nat. Mater. 7 442

    [6]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [7]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B: Chem. 54 3

    [8]

    Subramania G, Foteinopoulou S, Brener I 2011 Phys. Rev. Lett. 107 163902

    [9]

    Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese) [罗松, 付统, 张中月 2013 62 147303]

    [10]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]

    [11]

    Zhu J, Ren Y J 2013 Appl. Surf. Sci. 285 649

    [12]

    Heo C J, Kim S H, Jang S G, Lee S Y, Yang S M 2013 Adv. Mater. 21 1726

    [13]

    Huang F M, Wilding D, Speed J D, Russell A E, Bartlett P N, Baumberg J J 2011 Nano. Lett. 11 1221

    [14]

    Meinzer N, Barnes W L, Hooper I R 2014 Nat. Photon. 8 889

    [15]

    Ren W Z, Dai Y M, Cai H B, Ding H Y, Pan N, Wang X P 2013 Opt. Express 21 10251

    [16]

    Chris K J 2002 Neuroscience 22 639

    [17]

    Zhang X M, Xiao J J, Zhang Q 2014 Chin. Phys. B 23 017302

    [18]

    Hong X, Guo X B, Fang X, Li K, Ye H 2013 Acta Phys. Sin. 62 178502 (in Chinese) [洪霞, 郭雄彬, 方旭, 李衎, 叶辉 2013 62 178502]

    [19]

    Heshmat B, Li D 2011 Opt. Express 19 5912

    [20]

    Ge D B, Yan Y B 2002 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an: Xidian University Press) (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法 (第3版) (西安:西安电子科技大学出版社) 第25页]

    [21]

    Ni H B, Wang M, Shen T Y, Zhou J 2015 ACS Nano 9 1913

    [22]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (1st Ed.) (Jilin: Jilin University Press) (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(第1版) (吉林:吉林电子科技大学出版社) 第305页]

    [23]

    Haftel M I, Schlockermann C, Blumberg G 2006 Phys. Rev. B 74 235405

  • [1] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究.  , 2021, (): . doi: 10.7498/aps.70.20210855
    [3] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明.  , 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [4] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [5] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构.  , 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [6] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光.  , 2016, 65(15): 154205. doi: 10.7498/aps.65.154205
    [7] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [8] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性.  , 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [9] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [10] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究.  , 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [11] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究.  , 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [12] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [13] 潘伟, 余和军, 张晓光, 席丽霞. 高Q值二维光子晶体缺三腔的数值模拟与分析.  , 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [14] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器.  , 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [15] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究.  , 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [16] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究.  , 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [17] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究.  , 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [18] 徐 帆, 张新亮, 黄德修. 新型结构可调谐全光波长转换器的理论与实验研究.  , 2004, 53(7): 2165-2169. doi: 10.7498/aps.53.2165
    [19] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体.  , 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
    [20] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计.  , 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
计量
  • 文章访问数:  7804
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-25
  • 修回日期:  2015-07-31
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map