搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顶栅石墨烯离子敏场效应管的表征及其初步应用

吴春艳 杜晓薇 周麟 蔡奇 金妍 唐琳 张菡阁 胡国辉 金庆辉

引用本文:
Citation:

顶栅石墨烯离子敏场效应管的表征及其初步应用

吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉

Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors

Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui
PDF
导出引用
  • 传统的液栅型石墨烯场效应管虽然灵敏度高, 但是石墨烯沟道极易被污染, 致使器件的稳定性减小, 不能被重复利用. 为此, 我们设计制造了一种顶栅石墨烯离子敏场效应管, 以化学气相沉积生长的石墨烯为沟道, 通过原子层沉积在石墨烯表面沉积绝缘层HfO2/Al2O3, 其中Al2O3作为敏感膜, HfO2/Al2O3作为石墨烯及电极的保护膜. 经过一系列的电学表征和测试发现, 相较于液栅型石墨烯场效应管, 顶栅石墨烯场效应管具有更高的信噪比、更好的稳定性. 为了利用顶栅石墨烯进行生物分子的检测, 我们将单链DNA修饰在Al2O3表面, 成功检测到了修饰DNA前后的信号差异, 并结合荧光修饰的表征验证了顶栅石墨烯场效应管用于生物传感器的可行性.
    Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical strength). Field-effect transistor is shown to be a very promising candidate for electrically detecting chemical and biological species. Most of the reports on graphene field-effect transistors show that solution-gated graphene field effect transistors have been used so far. Although the traditional solution-gated graphene field effect transistor has high sensitivity, but the graphene channel is contaminated easily. The stability of the device is reduced so that the device cannot be reused. Only very recently, has the top-gated graphene, which is potentially used for pH sensors, been reported. In the top-gated graphene the dielectrics is deposited at the top of graphene. However, the sensitivity is lower than other sensors. To improve the properties, we design and fabricate a top-gated graphene ion-sensitive field effect transistor by using large-area graphene synthesized by chemical vapor deposition. At the top of graphene, HfO2/Al2O3 thin film is deposited by atomic layer deposition. The Al2O3 film plays a role of sensitive membrane, and the HfO2/Al2O3 thin film protects the graphene from contamination of the solution. After depositing the top-gate, because of the shield of the insulation, the boundary between the graphene and the substrate is not clear. And the Raman spectrum indicates the presence of a defective top layer accompanied by an increase in the Raman D peak. After a series of electrical characterizations, compared with solution-gated graphene field effect transistor which directly contacts the graphene channel with the solution, the top-gated graphene ion-sensitive field effect transistor has a high resistance. This increase relative to uncovered grapheme, is attributed to the participation of the top -orbitals in van der Waals bonds to the insulation. The graphene -orbitals contributing to van der Waals bonds have less overlaps and thus result in reduced conductivity. However the output curves and transfer curves show that the top-gated graphene ion-sensitive field effect transistor has higher signal-to-noise ratio and better stability. In view of the biochemical detection, in this paper we also examine the adsorption of single-stranded DNA. Silane functionalization of metal oxide system is a versatile technique that can be used in DNA microarray and nanotechnology. The DNA immobilization process we have developed contains several steps: silanization (APTES), crosslinker attachment (EDC and NHS), reaction with carboxyl-DNA and removal of non-covalently bound DNA. We characterize the process with carboxyl-quantum dots. We also measure the transfer curves before and after the adsorption of DNA, and demonstrate the effectiveness of the functionalized process and the feasibility that the top-gated graphene ion-sensitive field effect transistor is used as the biosensor.
      通信作者: 胡国辉, hu_guohui@126.com;jinqh@mail.sim.ac.cn ; 金庆辉, hu_guohui@126.com;jinqh@mail.sim.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2014AA06A506)、国家自然科学基金(批准号: 61501441, 61401442)、中国科学院中德国际合作伙伴团队项目(批准号: GJHZ 1306)、上海市科委项目(批准号: 14ZR1447300, 15220721700)和上海市教委基础研究重点项目(批准号: 14ZZ095)资助的课题.
      Corresponding author: Hu Guo-Hui, hu_guohui@126.com;jinqh@mail.sim.ac.cn ; Jin Qing-Hui, hu_guohui@126.com;jinqh@mail.sim.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA06A506), the National Natural Science Foundation of China (Grant Nos. 61501441, 61401442), the Sino-German Program of Cooperation (Grant No. GJHZ 1306), the Project of Shanghai Science and Technology Commission, China (Grant Nos. 14ZR1447300, 15220721700), and the Innovation Program of Shanghai Municipality Education Commission, China (Grant No. 14ZZ095).
    [1]

    Ding X F, Niu M N 1995 Transduc. Microsyst. Technol. 14 1 (in Chinese) [丁辛芳, 牛蒙年 1995 传感器与微系统 14 1]

    [2]

    Kwon D H, Cho B W, Kim C S, Sohn B K 1996 8th International Conference on Solid-State Sensors and Actuators (Eurosensors IX) Stockholm, Sweden, June 25-29, 1995 p441

    [3]

    Zhang G J, Ning Y 2012 Anal. Chim. Acta 749 1

    [4]

    Gonalves D, Prazeres D M F, Chu V, Conde J P 2008 Biosens. Bioelectron. 24 545

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Yang J J, Li J J, Deng W, Cheng C, Huang M 2015 Acta Phys. Sin. 64 198102 (in Chinese) [杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭 2015 64 198102]

    [8]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 63 176801]

    [9]

    Ang P K, Chen W, Wee A T S, Loh K P 2008 J. Am. Chem. Soc. 13 0 14392

    [10]

    Ohno Y, Maehashi K, Matsumoto K 2010 Biosens. Bioelectron. 26 1727

    [11]

    Rory S, Mulvaney S P, Robinson J T, Tamanaha C R, Sheehan P E 2013 Anal. Chem. 85 509

    [12]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [13]

    Wang B, Liddell K L, Wang J J, Koger B, Keating C D, Zhu J 2014 Nano Res. 7 1263

    [14]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [15]

    Ni Z H, Wang H M, Ma Y, Kasim J, Wu Y H, Shen Z X 2008 ACS Nano 2 1033

    [16]

    Liao L, Bai J W, Qu Y Q, Lin Y C, Li Y J, Huang Y, Duan X F 2010 P. Natl. Acad. Sci. USA 107 6711

    [17]

    George S M 2010 Chem. Rev. 110 111

    [18]

    Zhang Y W, Wan L, Cheng X H, Wang Z J, Xia C, Cao D, Jia T T, Yu Y H 2012 J. Inorg. Mater 27 956 (in Chinese) [张有为, 万里, 程新红, 王中健, 夏超, 曹铎, 贾婷婷, 俞跃辉 2012 无机材料学报 27 956]

    [19]

    Zhang Y W, Qiu Z J, Cheng X H, Xie H, Wang H M, Xie X M, Yu Y H, Liu R 2014 J. Phys. D: Appl. Phys. 47 055106

    [20]

    Devor E J, Behlke M A 2005 Idt Integrated Dna Technologies

    [21]

    Gao A, Lu N, Dai P F, Li T, Pei H, Gao X L, Gong Y B, Wang Y L, Fan C H 2011 Nano Lett. 11 3974

    [22]

    Gao A R, Lu N, Wang Y C, Dai P F, Li T, Gao X L, Wang Y L, Fan C H 2012 Nano Lett. 12 5262

    [23]

    Lemme M C, Echtermeyer T J, Baus M, Kurz H 2007 IEEE Electr. Dev. Lett. 28 282

    [24]

    Banerjee S, Sardar M, Gayathri N, Tyagi A K, Raj B 2006 Appl. Phys. Lett. 88 062111

    [25]

    Pan W 2013 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [潘望 2013 硕士学位论文 (武汉: 华中科技大学)]

    [26]

    Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G, Reifenberger R 2008 Appl. Phys. Lett. 92 092102

  • [1]

    Ding X F, Niu M N 1995 Transduc. Microsyst. Technol. 14 1 (in Chinese) [丁辛芳, 牛蒙年 1995 传感器与微系统 14 1]

    [2]

    Kwon D H, Cho B W, Kim C S, Sohn B K 1996 8th International Conference on Solid-State Sensors and Actuators (Eurosensors IX) Stockholm, Sweden, June 25-29, 1995 p441

    [3]

    Zhang G J, Ning Y 2012 Anal. Chim. Acta 749 1

    [4]

    Gonalves D, Prazeres D M F, Chu V, Conde J P 2008 Biosens. Bioelectron. 24 545

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Yang J J, Li J J, Deng W, Cheng C, Huang M 2015 Acta Phys. Sin. 64 198102 (in Chinese) [杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭 2015 64 198102]

    [8]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 63 176801]

    [9]

    Ang P K, Chen W, Wee A T S, Loh K P 2008 J. Am. Chem. Soc. 13 0 14392

    [10]

    Ohno Y, Maehashi K, Matsumoto K 2010 Biosens. Bioelectron. 26 1727

    [11]

    Rory S, Mulvaney S P, Robinson J T, Tamanaha C R, Sheehan P E 2013 Anal. Chem. 85 509

    [12]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [13]

    Wang B, Liddell K L, Wang J J, Koger B, Keating C D, Zhu J 2014 Nano Res. 7 1263

    [14]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [15]

    Ni Z H, Wang H M, Ma Y, Kasim J, Wu Y H, Shen Z X 2008 ACS Nano 2 1033

    [16]

    Liao L, Bai J W, Qu Y Q, Lin Y C, Li Y J, Huang Y, Duan X F 2010 P. Natl. Acad. Sci. USA 107 6711

    [17]

    George S M 2010 Chem. Rev. 110 111

    [18]

    Zhang Y W, Wan L, Cheng X H, Wang Z J, Xia C, Cao D, Jia T T, Yu Y H 2012 J. Inorg. Mater 27 956 (in Chinese) [张有为, 万里, 程新红, 王中健, 夏超, 曹铎, 贾婷婷, 俞跃辉 2012 无机材料学报 27 956]

    [19]

    Zhang Y W, Qiu Z J, Cheng X H, Xie H, Wang H M, Xie X M, Yu Y H, Liu R 2014 J. Phys. D: Appl. Phys. 47 055106

    [20]

    Devor E J, Behlke M A 2005 Idt Integrated Dna Technologies

    [21]

    Gao A, Lu N, Dai P F, Li T, Pei H, Gao X L, Gong Y B, Wang Y L, Fan C H 2011 Nano Lett. 11 3974

    [22]

    Gao A R, Lu N, Wang Y C, Dai P F, Li T, Gao X L, Wang Y L, Fan C H 2012 Nano Lett. 12 5262

    [23]

    Lemme M C, Echtermeyer T J, Baus M, Kurz H 2007 IEEE Electr. Dev. Lett. 28 282

    [24]

    Banerjee S, Sardar M, Gayathri N, Tyagi A K, Raj B 2006 Appl. Phys. Lett. 88 062111

    [25]

    Pan W 2013 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [潘望 2013 硕士学位论文 (武汉: 华中科技大学)]

    [26]

    Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G, Reifenberger R 2008 Appl. Phys. Lett. 92 092102

  • [1] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [2] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控.  , 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [3] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [4] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [5] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管.  , 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [10] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展.  , 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究.  , 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [14] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究.  , 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [15] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [16] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质.  , 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [17] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响.  , 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [18] 张 威, 李梦轲, 魏 强, 曹 璐, 杨 志, 乔双双. ZnO纳米线场效应管的制备及I-V特性研究.  , 2008, 57(9): 5887-5892. doi: 10.7498/aps.57.5887
    [19] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路.  , 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [20] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响.  , 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
计量
  • 文章访问数:  7303
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 修回日期:  2016-01-12
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map